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Abstract
A fundamental concept in control theory is that
of controllability, where any system state can be
reached through an appropriate choice of con-
trol inputs. Indeed, a large body of classical and
modern approaches are designed for controllable
linear dynamical systems. However, in practice,
we often encounter systems in which a large set of
state variables evolve exogenously and indepen-
dently of the control inputs; such systems are only
partially controllable. The focus of this work
is on a large class of partially controllable lin-
ear dynamical systems, specified by an underly-
ing sparsity pattern. Our main results establish
structural conditions and finite-sample guarantees
for learning to control such systems. In particu-
lar, our structural results characterize those state
variables which are irrelevant for optimal con-
trol, an analysis which departs from classical con-
trol techniques. Our algorithmic results adapt
techniques from high-dimensional statistics—
specifically soft-thresholding and semiparametric
least-squares—to exploit the underlying sparsity
pattern in order to obtain finite-sample guaran-
tees that significantly improve over those based
on certainty-equivalence. We also corroborate
these theoretical improvements over certainty-
equivalent control through a simulation study.

1. Introduction
A recurring theme in modern sequential decision making
and control applications is the presence of high-dimensional
signals containing much irrelevant information. Operating
on raw signals provides flexibility to learn much higher-
quality policies than what may be expressed using hand-
engineered inputs or features, but it poses new challenges for
reinforcement learning (RL) and control. In the context of
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controls, high-dimensionality inevitably leads to many state
variables that do not affect and cannot be affected by the
controller inputs. Hence, these state variables are irrelevant
for optimal control. In this work, we consider the question
of how to efficiently learn to control partially controllable
systems, while ignoring these irrelevant variables.

Example 1 (Turbine Orientation (Stanfel et al., 2020)).
Consider the problem of learning to orient turbines in a
wind farm in response to sensor measurements of wind
speed and direction. To learn a high-quality controller that
can anticipate local wind patterns, it is desirable to collect
measurements from a broad region. However geographical
features such as mountains and valleys may render some of
these measurements irrelevant for the control task, although
this may not be known to the system designer in advance.
As such, we would like our controller to efficiently learn to
ignore these irrelevant sensors while relying on the relevant
ones for decision making.

Systems like this contain two challenging elements for learn-
ing to control. First, a large part of the system state —
namely the wind speed and direction at all locations — is
completely uncontrollable, as the wind turbines negligibly
affect weather patterns. Rather, the controller must react
to these state variables even though they cannot be con-
trolled. Second, some of the uncontrollable variables may
be completely irrelevant, meaning they have no bearing on
the optimal control decisions. To complicate matters, which
variables are controllable, uncontrollable, and irrelevant
must be learned, ideally in a sample-efficient manner.

In the broader literature, there are two well-studied ap-
proaches for addressing high dimensionality. One approach
is through feature engineering or the use of kernel machines,
while the other exploits sparsity to recover certain low-
dimensional structural information. Both approaches have
been utilized in the context of decision making, the former
via dimension-free linear control (Perdomo et al., 2021) and
the Kernelized Nonlinear Regulator (Deisenroth and Ras-
mussen, 2011; Mania et al., 2020; Kakade et al., 2020), and
the latter both in RL (Agarwal et al., 2020; Hao et al., 2021)
and some works on continuous control (Fattahi and Sojoudi,
2018; Wang and Yang, 2020; Sun et al., 2020). This work
contributes to the latter line of work on structure recovery
in continuous control.
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Our focus is on establishing non-asymptotic guarantees for
learning to control in high-dimensional partially controllable
systems like the wind farm example described above. We
focus our attention on the problem of learning the linear
quadratic regulator (LQR) in which the majority of the state
variables are irrelevant.

Technical Overview. Deferring further details and tech-
nical motivation to subsequent sections, we present a brief
overview of the setup and results. Consider a dynamical
system of the form xt+1 = Axt +But + ξt where xt ∈ Rd
is the system state, ut ∈ Rdu is the controller input, and ξt
is a (stochastic) disturbance. The system is said to be con-
trollable if, in expectation, any system state can be reached
through an appropriate choice of a deterministic control
sequence (Formally, this condition is equivalent to the con-
trollability matrix being full rank. See Section 3). When
such a condition does not hold, we call the system partially
controllable. For such systems, it is well known that there
exists an invertible transformation of the state variables,
such that the system can be rewritten with dynamics of the
form (Klamka, 1963; Sontag, 2013):

A =

[
A1 APC

12

0 APC
2

]
, B =

[
B1

0

]
. (1)

Here the first block of coordinates corresponds to the con-
trollable subsystem. On the other hand, the second block of
uncontrollable coordinates cannot be affected by the con-
trol inputs (due to that B2 = 0, although it can affect the
controllable subsystem (if APC

12 6= 0) (Klamka, 1963; Zhou
et al., 1996; Sontag, 2013).

To capture the presence of irrelevant state variables that do
not affect the controllable subsystem, we consider a dynam-
ical system that is more structured than (1). In our setting,
which we call the partially controllable linear-quadratic (PC-
LQ) control problem, the system admits the block structure:

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 . (2)

To capture the irrelevance of state variables, our main learn-
ability results will assume that the underlying dynamics of
the system are determined by an (A,B) in this form, up
to a permutation of the coordinates (see below for more
discussion about this assumption). As we shall see, the first
two blocks make up the relevant part of the system, while
the third block of coordinates are irrelevant (in the sense
that if we condition on knowing the values of the coordi-
nates in blocks 1 and 2, then the state variables in block 3
provide no further information with regards to predicting
the controllable coordinates in block 1, which, as we shall
see, is what is required for optimal control). We are par-
ticularly interested in the high-dimensional regime where
A1 ∈ Rsc×sc , A2 ∈ Rse×se and sc + se := s� d.

Our Contributions. Our first theorem is a structural re-
sult characterizing which state variables are irrelevant for
optimal control. The result pertains to all problems equiv-
alent to PC-LQ control, and is proven via an invariance
argument. When specialized to PC-LQ control, the theorem
verifies that the third block of state variables can be ignored
by the optimal controller (while it is clear that the optimal
value function depends on block three). This structural re-
sult and our assumption that the relevant subsystem (blocks
one and two) comprises few state variables, shows that the
optimal policy is “sparse”: it is determined by poly(s) pa-
rameters, although neither the system dynamics A nor the
optimal value function are sparse matrices.

Relying on the characterization of the relevant state vari-
ables for optimal control we turn to the main contribution of
our work. We derive two algorithms that incorporate ideas
from high-dimensional statistics to efficiently estimate only
the relevant parts of the system dynamics. In Table 1 on
page 3, we summarize the main results of the paper and
compare with guarantees for certainty-equivalent control.
We study two settings that differ only in their assumptions
on the distribution of the starting state x0. In the first setting
(labeled “diagonal” in Table 1 on page 3), we assume that x0

is sampled such that E[x0] = 0 and E[x0x
>
0 ] is a diagonal

matrix. In this case, we show that our algorithm learns a
near-optimal control with a nearly-dimension-free rate: the
sample complexity scales polynomially with the sparsity s
and action dimension du, but only logarithmically with the
ambient dimension d.

The second setting generalizes the diagonal case to only
require that x0 has strictly positive definite (PD) covari-
ance. Here our algorithm incurs a lower order polynomial
dependence on the ambient dimension d. In particular, for
d2 ≤ (s2 +dus)/ε this lower order term is dominated by the
leading term, which yields the same sample complexity as
in the diagonal case. In both settings, our bounds compare
quite favorably to certainty-equivalent control, which in-
curs a poly(d)/ε leading order dependence. For the second
setting, our algorithmic approach relies on a reduction to
a semi-parametric least squares estimation (Chernozhukov
et al., 2016; 2018a; Foster and Syrgkanis, 2019). We pro-
vide a new result (see Proposition 9), which might be of
independent interest, for the semi-parametric least squares
estimation algorithm for the linear case.

2. Preliminaries and Notation
Linear-Quadratic Control. A linear-quadratic (LQ) con-
trol problem is specified by a tuple of matrices L =
(A,B,Q,R). The state x ∈ Rd evolves according to
xt+1 = Axt + But + ξt where u ∈ Rdu is the in-
put to the system and ξt is i.i.d. noise. The cost con-
ditioning on the first observation to be x1 is given by
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Covariance Matrix Estimation Algorithm Sample Complexity

Positive Definite Least-Squares Õ
(
poly(d,du)

ε

)
Diagonal Second-Moment Product Õ

(
s2+dus

ε

)
Positive Definite Semiparametric Least-Squares Õ

(
s2+dus

ε +

√
(s2+dus)d

ε0.5

)
Table 1. Sample complexity results for learning a near-optimal controller in the PC-LQ setting. Our results, highlighted in gray, compare
favorably with the classical least-squares/certainty-equivalent control when the relevant subsystem has dimensionality s� d. We assume
the third, irrelevant, block of (2) is stable in L∞ norm (Assumption 1). In Õ(·) we only keep polynomial dependence in ε, d, s, and du.
See Appendix A for a thorough summary.

J(x1, {ut}t≥1) = E
[∑

t≥1 x
>
t Qxt + utRut | x1

]
and

J({ut}t≥1) = E
[
J(x1, {ut}t≥1)

]
. The cost matrices are

assumed to be positive-semi definite, Q < 0, R � 0. The
task is to find the policy that minimizes J

(
{ut}t≥1

)
. It is

well-known that the optimal controller, the linear quadratic
regulator (LQR), of such a system is linear in the state vec-
tor, ut = K?xt, and the optimal value from any x1 is given
by J?(x1) = x>1 P?x1, where P? is the solution of the Ric-
cati equation and K? = (R + BTP?B)−1B>P?A. With
some abuse of notation we let J(K) be the expected cost
when following taking actions according to u = Kx.

In this work, we assume that R = Idu , and write L =
(A,B,Q) for short. This can be obtained by rotating
u → R−1/2u, which is valid since R � 0. We also as-
sume the system is stabilizable, which means that there
exists a matrix K ∈ Rdu×d such that ρ(A + BK) < 1,
where ρ(X) = max {|λi(X)|}i is the spectral radius of
X and λi(X) refers to the eigenvalues. Furthermore,
we denote Amax = maxi,j∈[d] |A(i, j)| and Bmax =
maxi∈[d],k∈[du] |B(i, k)|.

Notation. We denote by K?(L) as the optimal policy of
L. We let [n] = {1, .., n}. Given two ordered lists I1 and
I2 we let I2/I1 = {x ∈ I2|x /∈ I1} denote their difference.
Furthermore, given a vector x ∈ Rd and a list I with entries
in [d] we let x(I) denote the vector in R|I| which contains
the coordinates of I, x(I) =

[
x(I(1)) · · · x(I(|I|))

]
.

We denote Id as the identity matrix of dimension d. The
spectral/L2 norm of a matrix is denoted by ||A||op and
the Frobenius norm by ||A||F . We use O(X) to refer to
a quantity that depends on X up to constants, and denote
a ∨ b = max(a, b). For a square matrix A ∈ Rd×d we
denote size(A) = d.

3. The Partially Controllable
Linear-Quadratic Control Problem

In this section we formally define the LQ problem we ana-
lyze and later derive sample complexity results. We focus
on an LQ problem that consists of a partially controllable

system and define an explicit notion of irrelevant state vari-
ables. Specifically, we establish that these state variables
are irrelevant for optimally control this system, and, for that
reason, we say the optimal controller of such a system is
sparse.

A linear system is said to be partially controllable if the
controllability matrix G =

[
B AB · · · AdB

]
is not

of a full rank, that is rank(G) = sc < d (e.g., Sontag
(2013)). For an LQ problem in such a system, there exists
a linear transformation T that transforms the system and
cost function to obtain an equivalent LQ control problem
L̃ = (Ã, B̃, Q̃) with the block structure of (1). This repre-
sentation reveals that the second block of coordinates APC

2

cannot be affected by the controller inputs. As such, one
might hope that APC

12 and APC
2 are not required for optimal

control. Unfortunately, this is not the case, as we show in
the next simple example. Even when rank(G) = 1 and
Q = Id, the optimal policy may depend on the full dynam-
ics of the uncontrollable subsystem (see Appendix C for
detailed analysis).

Example 2 (Necessity of uncontrollable dynamics for opti-
mal control). Let ρ ∈ Rd−1, ||ρ||∞ < 1,

Aρ =


1 1 1 · · · 1
0 ρ1 0 · · · 0

...
...

0 0 · · · 0 ρd−1

 , B =


1
0
...
0

 , Q = Id,

Let Lρ = (Aρ, B, Id) be a stabilizable LQ problem. Then,
K?(Lρ) is a function of ρ.

The example highlights that, without further structure, the
optimal policy may depend on Ω(d) parameters of the tran-
sition dynamics A even though only a small portion of the
system is controllable. Intuitively, this occurs because the
uncontrollable system interacts with the controllable one
through matrix APC

12 in (1), so the optimal controller must
plan for and react to the uncontrollable state.

On the other hand, there are many systems in which some
uncontrollable state variables do not affect the controllable
ones whatsoever. The following model captures this sce-
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nario; we refer to this model as a Partially Controllable
Linear Quadratic (PC-LQ) control problem.1

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 , Q = Id, (3)

where A1 ∈ Rsc×sc , A2 ∈ Rse×se , Ad−s×d−s3 , B1 ∈
Rsc×du and s = se + sc. The linear system in a PC-LQ
problem2 can be decomposed into three components: a con-
trollable system, an uncontrollable relevant system, and an
uncontrollable irrelevant system, where the latter has no
interaction with the controllable system. These are the first,
second, and third blocks on the diagonal, respectively. Fur-
thermore, A12 is a coupling that allows the uncontrollable
relevant dynamics to affect the controllable ones, and A32 is
a coupling that allows the uncontrollable relevant system to
affect the irrelevant one. Observe that any LQ control prob-
lem can be written in the form of (3), for some sc and se,
where, for a general stable system, with no uncontrollable
irrelevant dynamics, sc + se = d.

If the PC-LQ has s < d, then there are variables that are
essential for modeling the dynamics that are superfluous for
optimal control. Indeed, as we show in the next result, the
optimal policy of any PC-LQ problem does not depend on
the entire transition dynamics, specifically, the optimal con-
troller is insensitive to the dynamics of the uncontrollable
irrelevant subsystem (blocks A3 and A32). On the other
hand, this subsystem can exhibit a very complex temporal
structure, so it is important for dynamics modeling/certainty
equivalence. Thus, even though the dynamics matrix A is
not a low-dimensional object, when s� d, it is thus apt to
say that the optimal policy of a PC-LQ is low-dimensional.
The following result explores two invariance properties of
the optimal controller in a PC-LQ problem under cost and
dynamics transformation (see Appendix D for the proof).

Theorem 1 (Invariance of Optimal Policy for PC-LQ). Con-
sider the following PC-LQ problems (as in equation (3)):

1. Let L1 = (A,B, Id), L2 = (A,B, I1+) be PC-LQ
problems in stabilizable systems with similar dynamics.
Let I1+ be a diagonal matrix such that (i) if i ∈ [d] is
a coordinate of the first block then I1+(i, i) = 1, and,
(ii) for any other i ∈ [d], I1+(i, i) ∈ {0, 1}.

2. Let L1 = (A,B, Id), L2 = (Ā, B, Id) be PC-LQ prob-
lems in stabilizable systems such that

A =

A1 A12 0
0 A2 0
0 A32 A3

 , Ā =

A1 A12 0
0 A2 0
0 Ā32 Ā3

 .
1Note that the results in this section apply to any system that is

rotationally equivalent to (3).
2For brevity, we will henceforth use “a PC-LQ” to stand for “a

PC-LQ control problem”.

Then, for both (1) and (2), the optimal policy of L1 and L2

is equal, i.e., K∗(L1) = K∗(L2).

Of course, since Q = Id, the optimal value functions for
L1 and L2 will – in general – be quite different. Since the
uncontrollable blocks A3 and A32 of a PC-LQ are irrelevant
to optimally control it, we refer to both of the block as the
irrelevant blocks from this point onward. This highlights the
fact that the LQR of a PC-LQ is sparse: it does not depend
on the parameters of the irrelevant blocks.

3.1. Characterization via controllability and the
relevant disturbances matrices

A natural question is to understand when a system is equiv-
alent to a PC-LQ with an irrelevant subsystem. The next
result provides a characterization of PC-LQ in terms of the
controllability matrix and a new object that we call the rel-
evant disturbances matrix. Recall that any LQ problem
with controllability index sc can be rotated into the form (1).
For brevity, denote X12 = APC

12 and X2 = APC
2 . Let the

relevant disturbances matrix using this representation be

RD =
[
X>12 XT

2 X
>
12 · · · (XT

2 )d−scX>12

]
. (4)

Then, we have the following structural characterization of a
PC-LQ through the controllability and relevant disturbances
Krylov matrices (see Appendix E for the proof).

Proposition 2 (Controllability characterization of PC-LQ).
If L has controllability index sc and rank(RD) = se then
L = (A,B, Id) is rotationally equivalent to (3).

3.2. Characterization via minimal invariant subspaces

We next characterize a PC-LQ via the notion of minimal
invariant subspaces. This characterization is more useful for
our subsequent algorithmic development. Minimal invariant
subspaces (w.r.t., an initial subspace) are formalized in the
next definition.

Definition 3 (Minimal invariant subspace w.r.t. another sub-
space, e.g., (Basile and Marro, 1992)). LetK be a subspace
and A ∈ Rn×n. Subspace V is an invariant subspace of A
w.r.t. K if (i), K ⊆ V , and (ii) AV ⊂ V . V is the minimal
invariant subspace of A w.r.t. K if (i) and (ii) hold and V
is the subspace with the smallest dimension that satisfies
both (i) and (ii).

That is, the minimal invariant subspace of A w.r.t. K is the
smallest subspace that contains K and is closed/invariant
under the action of A, meaning that Av ⊂ V for any v ∈ V .
In Appendix F we show that the minimal invariant subspace
is always unique, and, thus, it is always well defined.

The next result shows that the first and second blocks of
a partially controllable system can be expressed in terms
of two minimal invariant subspaces. This yields a simple
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Algorithm 1 Learning Optimal Policy of PC-LQ
1: Require: ε, δ > 0.
2: Define: SThε(x) = 1I {|x| > ε} (x− sign(x)ε).

3: Get Â and B̂, an (ε, δ) element-wise estimates of A and
B, respectively.

4: Soft threshold the empirical estimates element-wise,
B̄ = Thε(B̂), Ā = Thε(Â).

5: Return: Optimal policy of L̄ = (Ā, B̄, I).

algebraic characterization of the relevant components of
the system, which we will use to develop algorithms (see
Appendix E for the proof).

Proposition 4 (PC-LQ and Minimal Invariant Subspaces).
An LQ problem is equivalent to PC-LQ (3) if and only
if there exist projection matrices with rank(PB) ≤
rank(Pc) ≤ rank(Pr) where

1. Pc is an invariant subspace of A w.r.t. PB and
rank (Pc) = sc,

2. Pr is an invariant subspace of (I − Pc)A> w.r.t. Pc
and rank (Pr) = sc + se = s,

such that A,B can be written as

A = PcAPc + PrA(Pr − Pc) + (I − Pr)A(I − Pc),
B = PBB.

The subspaces Pc and Pr are the minimal invariant sub-
spaces if and only if the controllability matrix is of rank sc
and the relevant disturbances matrix is of rank se.

With the above notation, the subspace Pc represents the first
block of (3), and Pr represents the first two blocks which
are generally required for optimally control a PC-LQ. The
matrix (I − Pr)A(I − Pc) represents the irrelevant blocks
of a PC-LQ which we can safely ignore by Theorem 1.

4. Learning Sparse LQRs in Partially
Controllable Systems

We now turn to our main question and focus on the learnabil-
ity of optimal policy in PC-LQ. We assume that the model
is transformed to be in the form of (3), so it is axis-aligned
up to permutations, i.e., the irrelevant state variables are
not a-priori known to the algorithm designer. We further
assume size(A1) + size(A2) = se + sc = s � d. Of
course, as we have discussed, the dynamics matrix A itself
is not sparse, but the optimal policy of such system, the
LQR, is sparse. Theorem 1 establishes the LQR depends
only on O(poly(s)) parameters. Thus, we hope for sample
complexity guarantees that scale primarily with the intrinsic
dimension s, rather than the ambient dimension d.

Remark 5 (Axis-aligned assumption). The axis-aligned
assumption is a natural extension of the sparsity assump-
tion made in sparse regression literature (e.g., (Wainwright,
2019), Chapter 7). In control problems, this assumption may
be satisfied when the state variables x arise from physical
measurements. In this case, axis-alignment corresponds to
negligible coupling between different state variables that
represent measurements in different locations (as elabo-
rated in Example 1). Furthermore, all the results generalize
naturally when the rotation for which the LQ problem can
be written as (3) is known. We comment that asymptotic
dimension-free bounds for system identifications without the
axis-aligned assumptions are impossible, due to the need
to learn the rotation matrix. We leave it as an interesting
future question to study whether asymptotic dimension-free
bounds are possible for general PC-LQ problems.

By Proposition 4 the optimal controller is insensitive to
errors in (I − Pr)A(I − Pc), corresponding to block 3
of the dynamics matrix. However, to take advantage of
this, we must first identify the zero pattern of the matrix A.
More formally, we seek estimates (Ā, B̄) of the dynamics
satisfying the following no false positive property:

∀i, j ∈ [d], k ∈ [du] : A(i, j) = 0⇒ Ā(i, j) = 0, and

B(i, k) = 0⇒ B̄(i, k) = 0. (5)

Indeed, in the presence of such a condition, we can ensure
that there is no interaction between the relevant and irrel-
evant parts of the system in the estimated model, so that
(Ā, B̄) is a PC-LQ with a similar block structure to the true
dynamics.

A natural way to obtain estimates of (A,B) that satisfy (5)
is to perform soft-thresholding on an entrywise accurate ini-
tial estimate. Note that the soft-thresholding operation does
not introduce much additional error. Since many options
are available for obtaining the initial estimate, we formal-
ize this via an oracle that we call the entrywise estimate.
In Section 5, we instantiate this oracle with two different
procedures and analyze their sample complexity.

Definition 6 (Entrywise estimator). We say that X̂ is an
(ε, δ) entrywise estimator of a matrix X ∈ Rd1×d2 if
with probability at least 1 − δ we have maxi,j |X̂(i, j) −
X(i, j)| ≤ ε.

Given access to such an oracle, Algorithm 1 learns an opti-
mal policy in a PC-LQ problem. First, it estimates (A,B)

via the entrywise estimator, to obtain (Â, B̂). Second, it
applies a soft-thresholding to these estimates to get Ā, B̄.
Finally, it returns the optimal policy of the LQ problem
L̄ = (Ā, B̄, I).

For the analysis, we require a technical assumption on the
L∞ stability of the irrelevant subsystem A3.
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Assumption 1 (L∞-stability of irrelevant dynamics). A3 is
L∞ stable: maxi

∑
j |A3(i, j)| = ||A3||∞ < 1.

In addition, our guarantee scales with the operator norm of
the optimal value function for the relevant subsystem only.
Formally, let L1:2 = (A1:2, B1:2, I1:2) be an s-dimensional
LQ problem defined by the first two blocks of (3) and let
P?,1:2 be the solution to the Ricatti equation for this system.
The guarantee is given as follows (see Appendix G for the
proof).
Theorem 7 (Learning the PC-LQ). Fix ε, δ > 0. Assume
access to an entrywise estimator of (A,B) with parameters
(
√
ε/ (2s(s+ du)), δ), and that Assumption 1 holds. Then,

if ε < 1/||P?,1:2||10
op, with probability greater than 1 − δ

Algorithm 1 outputs a policy K̄ such that

J?(K̄) ≤ J? +O(||P?,1:2||8opε).

To prove this result we utilize the machinery of Theorem 1,
Proposition 4, the perturbation result of (Simchowitz and
Foster, 2020), and the no-false positive property of the esti-
mated model.

5. Sample Complexity for Entrywise
Estimation

We now instantiate two entrywise estimators and establish
their sample complexity guarantees in two settings. First,
when the initial state x0 has a diagonal covariance matrix,
we show that a simple second-moment estimator suffices.
In the more general setting where the initial state x0 has
PD covariance, we develop an estimator based on semipara-
metric least-squares. The first estimator has better sample
complexity guarantees, while the second estimator is more
general.

5.1. Diagonal covariance matrix

When the initial state x0 has a diagonal covariance matrix,
we analyze a simple second-moment estimator. Specifically
we estimate the model with

Â =
1

Nσ2
0

∑
n

x1,nx
>
0,n, and B̂ =

1

N

∑
n

x1,nu
>
0,n,

(6)

given N partial trajectories {(x0,i, u0,i, x1,i)}Ni=1 where
u0,i ∼ N (0, Idu). For this estimator we prove the following
(see Appendix H.1 for a proof):
Proposition 8 (Entrywise estimation with diagonal
covariance). Assume that x0 ∼ N (0, σ0Id) and
that Assumption 1 holds. Denote σeff = 1 +
Amax

√
s +

(
1 +Bmax

√
du
)

((σ/σ0) ∨ σ) . Then, given

N = O

(
log( dδ )σ2

eff

ε2

)
samples (6) is an entrywise estimator

of (A,B) with parameters (ε, δ).

Combining with Theorem 7, we obtain the first shaded row
of Table 1 on page 3.

5.2. Positive definite covariance matrix

For the second setting, we only assume that the covariance
of x0 is PD. This, more general setting, is of importance
since the stationary measure of a policy may be quite com-
plex, and, in particular, it may induce correlations between
the irrelevant and relevant blocks (see Appendix B for fur-
ther discussion on the need to handle general covariance ma-
trices). In this case, the least-squares estimator of A yields
a guarantee in the Frobenius norm, which can be translated
into an entrywise estimate. However, the sample complexity
of this approach scales as poly(d)/ε2, which is too large for
our purposes. Instead of using classical least-squares, our
approach is based on a reduction to semiparametric least-
squares (Chernozhukov et al., 2016; 2018b;a; Foster and
Syrgkanis, 2019), which, as we will see, results in a sample
complexity of 1/ε2 +d/ε for entrywise estimation. Observe
that here the ambient dimension only appears in the lower
order term.

The main idea is as follows: Suppose we wish to learn the
(i, j)-th entry of A and assume we have (x1, x0) sample
pairs from the model x1 = Ax0 + ξ where ξ is a zero-mean
σ sub-gaussian vector. Then, for any i ∈ [d],

x1(i) = A(i, j)x0(j) + 〈A(i, [d]/j), x0([d]/j)〉+ ξi.
(7)

If the first and second terms on the RHS were uncorrelated,
then a linear regression of x1(i) onto x0(j) would yield
an unbiased estimate of A(i, j). Unfortunately, these two
terms are correlated under our assumptions, so least-squares
may be biased. To remedy this, we attempt to decorrelate
the two terms using a two-stage regression procedure. The
first stage involves high dimensional regression problems,
but these errors ultimately only appear in the lower order
terms.

Since our results for this problem may be of independent
interest, we next study a generalization of the model in (7)
and explain the estimator in detail. As a corollary, we obtain
a sample complexity guarantee for the entrywise estimator
for the PC-LQ.

Semiparametric least-squares. As a generalization
of (7), assume that x ∼ N (0,Σ) where λmin(Σ) > 0 and
x ∈ Rd and let

y = 〈w?, x1〉+ 〈e?, x2〉+ ξ (8)

where w?, x1 ∈ Rdw , e?, x2 ∈ Rde , x = [x1, x2]> and ξ is
σ sub-Gaussian. Furthermore, Σ = E

[
x2x

T
2

]
, and Σ/Σ2 is

the Schur complement. By observing tuples sampled from
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Algorithm 2 Semiparametric Least Squares

1: Require: Dataset D = {(x1,n, x0,n)}2Nn=1 row and column indices i, j ∈ [d].
2: Reduction to semiparametric LS: DSP = {(yn, z1,n, z2,n)}Nn=1 where

yn = x1,n(i), z1,n = x0,n(j), z2,n = x0,n([d]/j).

3: Estimate cross correlation L̂ =
(∑N

n=1 z1,nz
>
2,n

)(∑N
n=1 z2,nz

>
2,n

)†
.

4: Estimate conditional output ĉ =
(∑N

n=1 z2,nz
>
2,n

)† (∑N
n=1 ynz2,n

)
.

5: Set Â(i, j) =
(∑2N

n=N+1(z1,n − L̂z2,n)(z1,n − L̂z2,n)>
)† (∑2N

n=N+1 (yn − 〈ĉ, z2,n〉) (z1,n − L̂z2,n)
)
.

6: Output: Â(i, j)

this model {yn, x1,n, x2,n}Nn=1 we wish to estimate only
w?. To do so, we first estimate L? ∈ Rdw×dw and c? ∈ Rde ,
that relate x2 to the conditional expectation E[x1|x2] and
E[y|x2], with N samples via standard least-squares. Due to
the model Gaussian assumption, it holds that

E[x1|x2] = L?x2, E[y|x2] = cT? x2.

When access to exact estimates of these quantities is given,
we show in Appendix H.2.1, that the model (8) can be
‘orthogonalized’ and written as

y = 〈w?, x1 − L?x2〉+ 〈c?, x2〉 ,

where E[(x1 − L?x2)x>2 ] = 0, so that the two terms on the
right hand side are uncorrelated, unlike in the original model.
Thus, given estimates L̂N , ĉN , we regress y−〈ĉN , x2〉 onto
(x1 − L̂Nx2) to get an estimate of w?. See Algorithm 2
for a description of the algorithm. In the next result, we
show that this estimator has leading order error scaling
with dw and only a lower order error term scaling with de.
Furthermore, we get a minimal dependence in λmin(Σ),
with similar scaling as in usual OLS analysis (Hsu et al.,
2012b) (see Appendix H.2.2 for proof).

Proposition 9 (Semiparametric Least-Squares). Let δ ∈
(0, e−1). Consider model (8) and assume that Σ
is PD. Denote σ2

c = ||w?||2Σ/Σ2
+ σ2. Then, if

N ≥ O
((
σ2
c/λmin(Σ)

)
∨ 1
)
ddw log

(
d
δ

)
, with probability

1− δ, the semiparametric LS estimator ŵ of w? satisfies

||w? − ŵ||2 ≤

O

√σ2dw log
(

1
δ

)
Nλmin(Σ)

+

(
σ2
c ∨ σc

)
ddw log

(
dw
δ

)
N
√
λmin(Σ)

 .

Returning to the PC-LQ setting, we obtain an entrywise
estimator forA by applying the semiparametric LS approach
on each pair (i, j) ∈ [d]2. To estimate B, since we can
sample u0 with a diagonal covariance, we can apply the

results for the diagonal covariance case. We summarize
the sample complexity for entrywise estimation in the next
corollary (see Appendix H.2 for proof).

Corollary 10 (Element-wise Estimate, PD Covariance).
Assume x0 ∼ N (0,Σ) and that λmin(Σ) > 0. De-
note σ2

c = A2
maxλmax(Σ) + σ2. Then, if N ≥

O
((
σ2
c/λmin(Σ) ∨ 1

)
d log

(
d
δ

))
, and

N = O

(
σ2 log( dδ )
ε2λmin(Σ) +

d(σ2
c∨σc) log( dδ )
ε
√
λmin(Σ)

)
, then the semipara-

metric LS yields an entrywise estimate of A with parameters
(ε, δ).

Combining with Theorem 7, we obtain the second shaded
row of Table 1 on page 3.

6. Experiments
We present a proof-of-concept empirical study, to demon-
strate the end-to-end statistical advantages of leveraging
sparsity in the LQR of a PC-LQ. We generate synthetic sys-
tems with marginally stable controllable blocks; the task is
to learn a stabilizing controller K (such that ρ(A+BK) <
1) from finite samples, in the presence of many irrele-
vant state coordinates (letting d increase, while holding
s and du constant). We compare Algorithm 1 with the
certainty-equivalent controller obtained from the ordinary
least-squares (OLS) estimator for the system’s dynamics.

Synthetic PC-LQ problems were generated with i.i.d. stan-
dard Gaussian entries (for all A1, A2, A3, A12, A32, B1);
the diagonal blocks were normalized by their top singu-
lar values so that ρ(A1) = 1, and ρ(A2) = ρ(A3) = 0.9.
We computed Ā from the minimum-norm N -sample OLS
estimator, as well as the soft-thresholded semiparametric
least-squares estimator from Algorithm 1 (with ε = 0.1),
and obtained certainty-equivalent controllers K̄ by solving
the Riccati equation with L̄ := (Ā, B). Over 100 trials in
each setting, we recorded the fraction of times K̄ stabilized
the system (ρ(A+BK̄) < 1, and J(K̄) ≤ 1.1 · J(K∗)).
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Figure 1. Empirical comparison of Algorithm 1 with OLS for sta-
bilizing a marginally stable PC-LQ. As the number of irrelevant fea-
tures increases, the sample complexity of the sparsity-leveraging
estimator grows much more slowly. Success frequencies (with
standard deviations from the normal approximation) are measured
over 100 trials.

Figure 1 summarizes our findings: keeping the relevant
dimensions fixed (sc = se = 5, du = 1) and allowing d
to grow, the sample complexity of stabilizing the system
exhibits a far milder dependence on the ambient dimension
d when using our estimator. A complete description of the
experimental protocol is given in Appendix J.

7. Related Work
Partial controllability in control theory. The notion of
controllability and partial controllability has been well stud-
ied from many different aspects in both classical and modern
control theory (Kalman, 1963; Lin, 1974; Glover and Sil-
verman, 1976; Jurdjevic and Quinn, 1978; Zhou et al., 1996;
Bashirov et al., 2007; Sontag, 2013), as well as, the relation
between controllability and invariant subspaces (Klamka,
1963; Basile and Marro, 1992). In Section 3, we charac-
terize which parts of a PC-LQ are not needed for optimal
control. To the best of our knowledge, such characterization
does not exist in previous literature. One may interpret the
results of Section 3 as an extension of Kalman’s canonical
decomposition. That is, we further decompose the uncon-
trollable and observable system (see Kalman (1963), Page
165) into relevant and irrelevant parts for optimal control.

Structural results in LQ. Recently, there has been a
surge of interest in the learnability of LQ (Abbasi-Yadkori
and Szepesvári, 2011; Dean et al., 2019; Sarkar and Rakhlin,
2019; Cohen et al., 2019; Mania et al., 2019; Simchowitz
and Foster, 2020; Cassel et al., 2020; Tsiamis and Pap-
pas, 2021). However, learning in the presence of structural
properties of an LQ has been, to large extent, unexplored.
Closely related to our work is the problem studied in (Fat-
tahi and Sojoudi, 2018; Fattahi et al., 2019). There, the
authors considered an LQ problem in which the dynamics
itself has a sparse structure. Specifically, the dynamics was
assumed to have some sparse block structure such that all
elements in each block are simultaneously zero or non-zero.
We do not put any such restriction on a PC-LQ. Moreover,
in our case, the transition matrix A need not be a sparse ma-
trix, and may have Ω(d2) non-zero elements. The sparsity

utilized in our work is sparsity of the optimal controller and
not of the dynamics itself. We also comment that in (Fat-
tahi and Sojoudi, 2018; Fattahi et al., 2019) additional as-
sumptions were made, which are not satisfied in our setting.
First, the authors assume a mutual-incoherence condition
on the covariance matrix. Additionally, it is assumed that
A(i, j), B(i, j) ≥ γ > 0, i.e., that there is a minimal value
for the entries of the dynamics. These assumptions are cru-
cial for identification of the non-zero entries; assumptions
we do not make in this work (see Appendix B for further
discussion on the structure of the covariance matrix in our
setting). That is, we recover a near optimal policy without
the need to recover the true block structure.

Another related work is the work of (Wang and Yang, 2020),
where the authors assumed the dynamics is of low rank and
fully controllable. We do not make such an assumption and
allow for uncontrollable part to affect the controllable part.
Lastly, in (Sun et al., 2020), the authors analyzed system
identification via low-rank Hankel matrix estimation. Ob-
serve that Hankel based techniques only enable the recovery
of the controllable parts of the system, as they are based on
a function of AnB. However, to optimally control a stable
system, knowledge of the relevant uncontrollable process is
also needed (see Example 2).

8. Summary and Future Work
In this work, we studied structural and learnability aspects
of the PC-LQ. We characterized an invariance property of
the LQR of a PC-LQ. This revealed that the optimal con-
troller of such systems is, in fact, a low-dimensional object.
Then, given an entrywise estimator, we showed that the
sample complexity of learning an axis-aligned PC-LQ has
only a mild dependence on the ambient dimension, scaling
primarily with the dimensionality/sparsity of the optimal
controller.

The results presented in this work opens several interesting
future research avenues. First, we believe it would be inter-
esting to study additional invariance properties of optimal
policies of other control and RL problems. As stressed in
this work, invariances of the optimal controller can yield
statistical improvements for learning in such models. More
broadly, is there a general way to characterize such invari-
ances? Second, in this work, we assumed the PC-LQ model
is sparse, or, axis-aligned. A natural question would be to
study the learnability of such a model when the system is not
axis-aligned, and understand the nature of possible sample
complexity improvements in such systems? Lastly, extend-
ing our results to a single trajectory setting is of interest,
and may require developing new tools for semiparametric
least-squares analysis.
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Algorithm 3 Oracle via second-moments
1: Require: N > 0, σ0 > 0
2: Sample D = {(x0,n, x1,n)}Nn=1

3: Set Â = 1
Nσ2

0

∑N
n=1 x1,nx

>
0,n

4: Output: Â

Algorithm 4 Oracle via Semiparametric LS
1: Require: N > 0
2: Sample D = {(x0,n, x1,n)}2Nn=1
3: for i, j ∈ [d] do
4: Estimate Â(i, j) via semiparametric LS
5: for indices (i, j), Algorithm 5
6: end for
7: Output: Â

A. Summary of Sample Complexity Results
In Section 4, we study the performance of Algorithm 1, which assumes an oracle access to an (

√
ε/2s(s+ du)), δ) element-

wise estimate of the dynamics (A,B). Given such access, Theorem 7 establishes a near-optimal performance guarantee of
Algorithm 1.

Then, in Section 5 we study the sample complexity of the assumed (ε, δ) element-wise estimate for two settings: when x0

has a diagonal covariance (Section 5.1) and when x0 has a PD covariance (Section 5.2).

By combining these together, we get, as a corollary, the sample complexity of the two algorithms considered in this work.
That is, when Algorithm 1 is instantiated with Algorithm 3 or with Algorithm 4. We now formally give these corollaries,
which Table 1 on page 3 summarizes, for completeness.

Corollary 11 (Learning PC-LQ with second-moment Estimate). Let the assumptions of Proposition 8 and Theorem 7 hold.
Then, given

N = O

(
log
(
d
δ

) (
s2 + dus

)
σ2

eff ∨ 1

ε

)

samples, the optimal policy K̄ of the returned model of Algorithm 1 is at most ε suboptimal, where

J?(K̄) ≤ J? +O
(
||P?,1:2||8ε

)
.

Proof. By Proposition 8, given such amount of samples, the second-moment estimate is an
(
O(
√
ε/s(s+ du)), δ

)
element-

wise estimate of the dynamics matrix. Applying Theorem 7 implies the result.

Corollary 12 (Learning PC-LQ with semiparametric Least Square Estimate). Let the assumptions of Proposition 9 and
Theorem 7 hold. Then, given

N = O

(
σ2(s2 + sdu) log

(
d
δ

)
ελmin(Σ)

+
d
(
A2

maxλmax(Σ) + σ2
)√

s2 + sdu log
(
d
δ

)√
ελmin(Σ)

)

samples, the optimal policy K̄ of the returned model of Algorithm 1 is at most ε suboptimal, where

J?(K̄) ≤ J? +O
(
||P?,1:2||8ε

)
.

Proof. By Proposition 9, given such amount of samples, the semiparametric LS estimate is an
(
O(
√
ε/s(s+ du)), δ

)
element-wise estimate of the dynamics matrix. Applying Theorem 7 implies the result.

B. Comment on the Structure of Covariance Matrix
In Section 5.2 we devised an entrywise estimator given a general covariance matrix. We further elaborate why this is needed
for general PC-LQ problems. We consider two cases, (1) that the sampling policy does not depend on the state variables of
the third block, and (2) when they may depend on the state variables of the third block.
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Case 1: sampling policy does not depend on the state variables of the third block. In this case, assuming the noise is
Gaussian with a diagonal covariance matrix, the covariance matrix has the following block structure

Σ =

Σ11 Σ12 0
Σ>12 Σ22 Σ23

0 Σ>23 Σ33

 .
That is, there is a coupling between the state-variables on the second and third block.

Case 2. sampling policy depends on the state variables of the third block. In this case, the covariance matrix may
take an arbitrary shape. That is, if the sampling policy is a function of the state variables of the third block, the covariance
matrix might have non-zero off-diagonal in the PC-LQ model. Indeed, in lack of prior information on the identity of the
non-controllable and non-relevant state variables, the sampling policy may depend on these state variables.
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C. Counterexample with a General Uncontrollable System
Consider an LQR model Lρ = (Aρ, B,Q) where |ρ| < 1

Aρ =

[
1 1
0 ρ

]
, B =

[
1
0

]
, Q =

[
1 0
0 0

]
. (9)

See that by Theorem 1 the optimal policy of this LQR and the LQR with a modified cost Q = Id is invariant. See that only
the first coordinate of this system is controllable. For simplicity of analysis, we consider Lρ = (Aρ, B,Q).

Let Pρ,? be the solution of the Riccati equation. Then, the optimal policy is then given by

Kx,? = (R+B>Pρ,?B)−1(B>Pρ,?A).

In Appendix C.1 we solve the Riccati equation, in closed form, and show that

Pρ,1 =
1 +
√

5

2
, and Pρ,12 =

P1

P 2
1 − ρ

.

This implies that the optimal policy takes the following form,

Kρ,? =
1

1 + P1

[
P1 P1 + ρPρ,12

]
=

P1

1 + P1

[
1

P 2
1

P 2
1−ρ

]
.

Observe that since P1 > 1 and |ρ| < 1 this object is well defined.

The above implies that for ρ1 6= ρ2 it holds that

Kρ1,? 6= Kρ2,?. (10)

Hence, the optimal policy is a function of ρ.

Extending the Construction to Arbitrary Dimension To extend the argument to arbitrary dimension consider the d
dimensional deterministic LQR problem Lρ = (Aρ, B,Q)

Aρ =


1 1 1 · · · 1
0 ρ(1) 0 · · · 0
0 0 ρ(2) 0 0

...
...

0 0 · · · 0 ρ(d− 1)

 , B =


1
0
...
0
0

 , Q =

1 0 · · ·
0 0 · · ·
... 0

 ,

where |ρ| < 1. As before, the optimal policy of Lρ and the LQR system Lρ = (Aρ, B, Id) is invariant by Theorem 1: only
the first coordinate of this system is controllable. For simplicity we analyze Lρ.

Observe that if a state variable is initialized as x0(i) = 0 for any i ∈ {2, .., d} then it remains zero, no matter which action
is applied, since these coordinates are uncontrollable. Furthermore, since Kρ,? ∈ Rdu×d induces an optimal policy for any
state variable, it induces an optimal policy for any such initial state.

Observe that if we initialize the state variable as x0(i) = 1I {i = i0} for some i0 ∈ {2, .., d} the system is effectively
equivalent to the 2-dimensional system of Appendix C.1. For this two dimensional system, we show the optimal controller
is a function of ρ, see (10). This establishes the fact that for any two different vectors ρ1 6= ρ2 the optimal policy of
Lρ1 = (Aρ1 , B, Id) and Lρ2 = (Aρ2 , B, Id) is different.

C.1. Solving the Riccati Equation

The Riccati equation, for the above systems, has the following form.

Pρ,? = A>ρ Pρ,?Aρ +Q− (BTPρ,?Aρ)
>(R+BTPB)−1BTPρ,?Aρ

=

[
Pρ,1 Pρ,1 + ρPρ,12

Pρ,1 + ρPρ,12 Pρ,1 + 2ρPρ,12 + ρ2Pρ,2

]
+ I2 −

1

1 + Pρ,1

[
P 2
ρ,1 Pρ,1(Pρ,1 + ρPρ,12)

Pρ,1(Pρ,1 + ρPρ,12) (Pρ,1 + ρPρ,12)2

]
.
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Solving for Pρ,1. We solve the Riccati equation for its (1, 1) entry. For this entry, we get

P 2
ρ,1 − Pρ,1 − 1 = 0.

Solving for Pρ,1 we get two solutions, independently of the value of x.

Pρ,1 ≡ P1 =
1±
√

5

2
.

Eventually, we will show that only a single solution is valid among the two.

Solving for Pρ,12. We solve the Riccati equation for its (1, 2) entry (or, equivalently (2, 1)). For this entry, we get

Pρ,12 =
P1

1 + P1 − ρ
=

P1

P 2
1 − ρ

. (11)

Solving for Pρ,2. Finally, we solve the Riccati equation for its (2, 2) entry. For this entry, we get

Pρ,2 =

(
P 5

1 − P1ρ
2 − P 4

1

)
/(1− ρ2)

(P 2
1 − ρ)2

(12)

Picking a solution. Observe that the eigenvalues of a 2× 2 matrix are

λ± =
tr(A)±

√
tr(A)2 − 4 det(A)

2
. (13)

We now show that P1 = 1+
√

5
2 is a PSD solution whereas P1 = 1−

√
5

2 induces a non-PSD Pρ,?.

P1 = 1+
√

5
2 is a PSD solution. We check that det(Pρ,?) ≥ 0 and tr(Pρ,?) ≥ 0. This implies that P1 = 1+

√
5

2 is a PSD
solution by (13). We show that det(Pρ,?) ≥ 0. Since Pρ,? is symmetric, this condition is equivalent to(

P 6
1 − P 2

1 ρ
2 − P 5

1

)
/(1− ρ2) ≥ P 2

1

⇐⇒ P 6
1 − P 2

1 ρ
2 − P 5

1 ≥ P 2
1 (1− ρ2)

⇐⇒ P 4
1 − P 3

1 ≥ 1,

which holds since P 4
1 − P 3

1 ≥ 2.6. We show that tr(Pρ,?) ≥ 0. To show that, it suffices to check that

P1 +

(
P 5

1 − P1ρ
2 − P 4

1

)
/(1− ρ2)

(P 2
1 − ρ)2

≥ 0.

Since P 5
1 − P1ρ

2 − P 4
1 ≥ 0 for ρ ∈ (−1, 1) and P1 = (1 +

√
5)/2 we get that tr(Pρ,?) ≥ 0. Hence, P1 = 1+

√
5

2 induces a
PSD solution.

P1 = 1−
√

5
2 is not a PSD solution. We show that for this solution, either det(Pρ,?) < 0 or trPρ,? < 0. This implies,

by (13) that the matrix has a negative eigenvalues and thus it is not a PSD matrix. This contradicts the fact Pρ,? is PSD.

By the above calculation, and since Pρ,? is symmetric, it holds that

det(Pρ,?) = P1Pρ,2 − P 2
ρ,12.

To show that det(Pρ,?) < 0 it suffices to show(
P 6

1 − P 2
1 ρ

2 − P 5
1

)
/(1− ρ2) < P 2

1

⇐⇒ P 6
1 − P 2

1 ρ
2 − P 5

1 < P 2
1 (1− ρ2)

⇐⇒ P 4
1 − P 3

1 < 1,

which always holds since P 4
1 − P 3

1 < 0.4. Thus, det(Pρ,?) < 0 for P1 = 1+
√

5
2 which implies this solution should be

eliminated.
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D. Invariance of Optimal Policy of a PC-LQ
Theorem 1 (Invariance of Optimal Policy for PC-LQ). Consider the following PC-LQ problems (as in equation (3)):

1. Let L1 = (A,B, Id), L2 = (A,B, I1+) be PC-LQ problems in stabilizable systems with similar dynamics. Let I1+ be
a diagonal matrix such that (i) if i ∈ [d] is a coordinate of the first block then I1+(i, i) = 1, and, (ii) for any other
i ∈ [d], I1+(i, i) ∈ {0, 1}.

2. Let L1 = (A,B, Id), L2 = (Ā, B, Id) be PC-LQ problems in stabilizable systems such that

A =

A1 A12 0
0 A2 0
0 A32 A3

 , Ā =

A1 A12 0
0 A2 0
0 Ā32 Ā3

 .
Then, for both (1) and (2), the optimal policy of L1 and L2 is equal, i.e., K∗(L1) = K∗(L2).

Proof. First statement. First, we show that for any fixed and stable policy K, the difference in values between L1 and L2

does not depend on the policy K when the cost is transformed Id → I1+. Fix K which stabilizes A1 and x ∈ Rd. We
calculate the difference JL2,K(x)− JL1,K(x) and show it does not depend on K. It holds that

JL2,K(x)− JL1,K(x) = E

∑
t≥1

c2(xt)− c1(xt)|x1 = x;K

 = E

∑
t≥1

∑
i∈I
||xt(i)||22 | x1 = x;K

 ,
where I is the set of coordinates for which the diagonal of I1+ is zero. That is,

I = {i ∈ [d] : I1+(i, i) = 0} .

Observe that for any coordinate i ∈ I the state variable xt(i) is in either the second or third blocks of (3), the coordinates
that corresponds to uncontrollable state variables. Thus, xt(i) for any i ∈ I is not affected by the policy K (see Lemma 14).
This implies that for any x ∈ Rd,

JL2,K(x)− JL1,K(x) = E

∑
t≥1

∑
i∈I
||xt(i)||22 | x1 = x;K

 = C,

i.e., the difference JL2,K(x)− JL1,K(x) is constant. This implies that for any x,

arg min
K

JL1,K(x) = arg min
K

JL2,K(x).

Hence, the policy u(x) = K∗(L1)x which is optimal for L1 is also optimal for L2.

Second statement. Combining the first statement together with Lemma 13 we prove the claim. That is, consider two
alternative PC-LQ problems, L̃1 = (A,B, I1), L̃2 = (Ā, B, I1) where I1 is diagonal such that

I1(i, i) = 1I {i belongs to the first block} .

By Lemma 13 it holds that

K∗(L1) = K∗(L̃1), and,K∗(L2) = K∗(L̃2).

Then, by the first statement it holds that

K∗(L̃1) = K∗(L̃2).

Combining the two relations concludes the proof.
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Lemma 13 (Invariance of Optimal Policy Under Model Transformation). Consider the following LQR problems, L1 =
(A,B, I1), L2 = (Ā, B, I1) where the dynamics are given by

A =

A1 A12 0
0 A2 0
0 A32 A3

 , Ā =

A1 A12 0
0 A2 0
0 Ā32 Ā3

 , B =

B1

0
0

 ,
and,

I1 =

I 0 0
0 0 0
0 0 0

 .
Then, the optimal policy of the two models is similar, i.e., K∗(L1) = K∗(L2).

To prove this result, we consider the run of the policy iteration algorithm on both L1 and L2 for a specific initialization.
We show, that there is a conserved structure on both L1 and L2 by which we conclude that P ?(L1) = P ?(L2) by applying
Theorem 15. The formal proof is given as follows.

Proof. Step 1. Verifying conditions of Theorem 15. First, see that P̃ = 0 satisfies the linear inequality in the requirement of
Theorem 15. We now show there exists a stable policy for both L1, L2.
Let K0 ∈ Rdu×sc be a stable policy for (A1, B1). Indeed, since (A1, B1) are controllable, such policy exists. We first claim
that A+BKE

0 where KE
0 =

[
K0 0 0

]
∈ Rdu×dx is a stable policy To prove this claim, observe that due to the block

structure of A+BKE
0 it holds that

det(A+BKE
0 − λI) = det(A1 +B1K0 − λI1) det(A2 − λI2) det(A3 − λI3),

thus, λ is an eigenvalue of A+BKE
0 if and only if it is an eigenvalue of either A1 +B1K0, A2 or A3. Since all of these

systems are stable, i.e., every eigenvalue is smaller than one, then A+BKE
0 is also stable. Furthermore, since Ā3 is also

assumed to be stable, then, by similar reasoning, Ā+BKE
0 is stable.

Step 2. Applying policy iteration on both L1 and L2 with the initialized K(E)
0 . We now apply the policy iteration algorithm

on both L1 and L2, where we initialize both from K
(E)
0 . Let K(1)

i ,K
(2)
i be the policies obtained at the ith iteration when

running policy iteration on L1 and L2, respectively.
The following claim is established via induction: for any iteration i ≥ 0, it holds that

K
(1)
i = K

(2)
i = [Ki,1, Ki,2, 0] ,

i.e., the policy does not depend on the third block. Due to the convergence of policy iteration to the optimal policy, this
result will conclude the proof.
Base case. Holds due to the initialization K(1)

0 = K
(2)
0 = KE

0 .
Inductive step. Assume the claim holds until the (i− 1)th iteration. We prove it holds for the ith iteration. Since the policies
at the (i− 1)th iteration are equal and does not depend on the third block by the induction hypothesis (the third block is
zero) it holds that

P
(1)
i−1 = P

(2)
i−1 = Pi−1 =

 P1 P12 0
P12 P2 0
0 0 0

 ,
by Lemma 16 for some P1, P12, P2. The policy at the ith iteration is given by

K
(1)
i = (R+B>Pi−1B)BTPi−1A

K
(2)
i = (R+B>Pi−1B)BTPi−1Ā

By a direct calculation due to the form of Pi−1, it can be observed that K(1)
i = K

(2)
i =

[
Ki,1 Ki,2 0

]
for some

Ki,1,Ki,2, that is, K(1)
i and K(2)

i are equal and both do not depend on the third block. Hence, the induction step is proven,
and the lemma follows.
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Lemma 14. Let xt(i) be a state vector where i belongs either to the second or third blocks of a PC-LQ. That is, state vector
of the uncontrollable coordinates. Then, for any policy K it holds that

E

∑
t≥1

xt(i)
2 | x1 = x;K

 = C,

that is, it does not depend on the policy K.

Proof. First, observe that any power n of a block matrix is given by

An−1 =

[
A1 X2

0 X3

]n
=

[
An1 Poly(X2, X3, A1)
0 Xn

3

]
, (14)

where Poly(X2, X3, A1) is some polynomial of the matrices X2, X3, A1. See that the full state vector of any fixed policy
K is give by

xt = (A−BK)tx0 +

t∑
τ=1

(A−BK)t−τξτ ,

where ξτ is an independent i.i.d. and zero mean random vector. Let ei be a one-hot vector with ei(i) = 1 and zero elsewhere.
Due to (14), and since the first block is the only controllable block, we get that

e>i (A−BK)n = e>i

[
(A1 −B1K1)n Poly(X2, X3, A1, B1K12)

0 Xn
3

]
= e>i

[
0 0
0 Xn

3

]
, (15)

since

BK =

[
B1K1 B1K12

0 0

]
,

and since ei(j) = 0 for all coordinates j of the first block. Combining the above we get that

xt(i) = e>i (A−BK)tx0 +

t∑
τ=1

e>i (A−BK)t−τξτ

= e>i

[
0 0
0 Xt

3

]
x0 +

t∑
τ=1

T

[
0 0
0 Xt−τ

3

]
ξτ

= e>i A
t
0x0 +

t∑
τ=1

At−τ0 ξτ ,

where

A0 =

[
0 0
0 X3

]
does not depend on K. Thus,

E[xt(i)
2|K] = E

(e>i At0x0 +

t∑
τ=1

At−τ0 ξτ

)2

|K

 = C

does not depend on the policy K, since ξτ is i.i.d. and has the same distribution for all K.

D.1. Useful Results

Theorem 15 (Asymptotic Convergence of Policy Iteration for LQR, e.g., (Lancaster and Rodman, 1995), Theorem 13.1.1.).
Assume that (A,B) are stabilizable, R invertible, and assume that there is an hermitian solution P̃ to the linear matrix
inequality

P ≤ A>PA+Q− (BTPA)>(R+BTPB)−1BTPA,
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for which R+B>P̃B > 0. Then, there exists a unique solution P ? to the Riccati equation

P = A>PA+Q− (BTPA)>(R+BTPB)−1BTPA, (16)

such that P ? ≥ P for all the solutions of (16). Furthermore, the Policy Iteration procedure in which we initialize (K0, PK0
)

with some stable policy and update

Ki = (R+B>Pi−1B)BTPi−1A, Pi =
∑
t≥0

((A+BKi)
>)t(Q+K>i RKi)(A+BKi)

t

converges to P ?.
Lemma 16. Lee L = (A,B, I1) where

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 , I1 =

I 0 0
0 0 0
0 0 0

 .
Assume that a policy K induces a stable closed loop policy and does not depend on the third block. Then,

PK =

 P1 P12 0
P12 P2 0
0 0 0

 .
See that if the policy K does have a non-zero component in the third block PK might have non-zero components at the third
row and third column.

Proof. Observe that by the model assumption

A+BK =

A1 +B1K1 A12 +B1K2 0
0 A2 0
0 A32 A3

 .
Taking this matrix to some power t > 0 we get that

(A+BK)t =

(A1 +B1K1)t V1,t(A12, B1,K2, A2) 0
0 At2 0
0 V2,t(A2, A32, A3) At3

 , (17)

where V1,t, V2,t is some polynomial in its arguments.
We now apply the previous calculation to prove the result. The matrix PK satisfies the Lyapunov relation

PK =
∑
t≥0

(
(A+BK)t

)>
(I1 +K>RK)

(
(A+BK)t

)
=
∑
t≥0

(
(I1 +K>RK)1/2(A+BK)t

)> (
(I1 +K>RK)1/2(A+BK)t

)
.

By a direct computation and by plugging the form of (17) , we see that the matrix (I1 +K>RK)1/2(A+BK)t have zero
elements at the third row and column, that is

(I1 +K>RK)1/2(A+BK)t =

 Y1 Y12 0
Y21 Y2 0
0 0 0

 ,
for some Y1, Y12, Y21, Y2. This also implies that ((I1 +K>RK)1/2(A+BK)t)>(I1 +K>RK)1/2(A+BK)t have zero
elements at the third row and column, and, hence,

PK =
∑
t≥0

(
(I1 +K>RK)1/2(A+BK)t

)> (
(I1 +K>RK)1/2(A+BK)t

)
,

have zero elements at the third row an column as well.
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E. Structural Properties of PC-LQ Problems
The following lemma is well known, and is used to properly define the notion of controllable subspace, e.g. (Klamka, 1963;
Basile and Marro, 1992; Zhou et al., 1996; Sontag, 2013).

Lemma 17 (E.g., (Sontag, 2013), Lemma 3.3.3.). Let A ∈ Rn×n, B ∈ Rn×m and

G =
[
B AB · · · An−1B

]
.

Then, if rank(G) = r < n then there exists an invertible transformation such that the matrices Ã = TAT−1, B̃ = TB have
the block structure

Ã =

[
A1 A2

0 A3

]
, B̃ =

[
B1

0

]
, (18)

where A1 ∈ Rr×r, A3 ∈ Rd−r×d−r. Conversely, if A and B are given by (18) then rank(G) ≤ r.
Proposition 18 (Controllability characterization of PC-LQ). If L has controllability index sc and rank(RD) = se then
L = (A,B, Id) is rotationally equivalent to (3).

Proof. By Lemma 17, it holds that the controllable subpace is of rank ≤ sc if and only if there exists an invertible
transformation U1 such that

T1AT
−1
1 =

[
A1 X2

0 X3

]
, T1B =

[
B1

0

]
.

Apply this transformation and consider the relevant disturbances matrix (4)

RU =
[
XT

2 XT
3 X

>
2 · · · (XT

3 )d−scX>2
]
.

By Lemma 17, while plugging X>2 = B,X>3 = A, it holds that rank(RU) ≤ se if and only if there exists an invertible
transformation T2 ∈ Rd−sc×d−sc such that

T̄2X
>
3 T̄
−1
2 =

[
A>2 AT32

0 A>3

]
, T̄2X

>
2 =

[
A>12

0

]
⇐⇒ T−1

2 X3T2 =

[
A2 0
A32 A3

]
, X2T2 =

[
A12 0

]
(19)

where T2 = T̄>2 . Define an invertible transformation extended to Rd,

T3 =

[
I 0
0 T−1

2

]
, T−1

3 =

[
I 0
0 T2

]
.

Then, the concatenation T3T1 yields the result since,

T3T1AT
−1
1 T−1

2 = T3

[
A1 X2

0 X3

]
T−1

3

=

[
A1 X2T2

0 T−1
2 X3T2

]

=

A1 A12 0
0 A2 0
0 A32 A3

 ,
where the last relation holds by (19).

We now prove Proposition 4. This proposition gives an alternative characterization of a PC-LQ relatively to Proposition 2.
Specifically, Proposition 4 characterizes a PC-LQ by invariant and minimal invariant subspaces (which we review in
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Appendix F) instead of relying on the notion of the controllability matrix and the relevant disturbances matrix. Before
supplying with the proof observe that if V is an invariant subspace of A with dim(s) then, A can be written as

A =

[
A1 A12

0 A2

]
, (20)

in the basis were the first s coordinates span V .

Proposition 19 (PC-LQ and Minimal Invariant Subspaces). An LQ problem is equivalent to PC-LQ (3) if and only if there
exist projection matrices with rank(PB) ≤ rank(Pc) ≤ rank(Pr) where

1. Pc is an invariant subspace of A w.r.t. PB and rank (Pc) = sc,

2. Pr is an invariant subspace of (I − Pc)A> w.r.t. Pc and rank (Pr) = sc + se = s,

such that A,B can be written as

A = PcAPc + PrA(Pr − Pc) + (I − Pr)A(I − Pc),
B = PBB.

The subspaces Pc and Pr are the minimal invariant subspaces if and only if the controllability matrix is of rank sc and the
relevant disturbances matrix is of rank se.

Given the definition of minimal invariant subspace, the proof is straightforward.

Proof. →. If an LQR is equivalent to a PC-LQ then, there exists some basis such that the dynamics of L is given as

A =

A1 A12 0
0 A2 0
0 A32 A3

 , B =

B1

0
0

 .
It can be observed that, alternatively, in this basis, we can write

A = PcAPc + PrA(Pr − Pc) + (I − Pr)A(I − Pc), B = PBB,

where PB ⊆ Pc ⊆ Pr, and PB is the projection on the coordinates on which B has non-zero rows, Pc is a projection on the
coordinate of block A1, and Pr is a projection on the coordinates of the first two blocks. Then, rotating to the original basis
does not change this representation.

←. First, rotate B such that PB is diagonal. In these coordinates,

B =

B1

0
0

 .
Since PB ⊆ Pc it can be jointly diagonalized with PB . Thus, in this basis, since Pc is an invariant subspace, we can write A
as

A =

[
A1 X2

0 X3

]
, thus, (I − Pc)A> =

[
0 0
X>2 X>3

]
.

Since Pc ⊆ Pr it can be jointly diagonalized with Pc by a matrix

U =

[
I 0

0 Ũ

]
,

where Ũ is orthogonal matrix. In this basic, by applying the transformation (I − Pc)A> → U(I − Pc)A>U>, it holds that

(I − Pc)A> =

[
0 0

ŨX>2 ŨX>3 Ũ
>

]
.
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Furthermore, since Pr is an invariant subspace, it must hold that

(I − Pc)A> =

 0 0 0
A>32 A>2 A>12

0 0 A>3

 ,
since, otherwise, Pr is not an invariant subspace. Lastly, observe that then we can write

(I − Pc)A> = Pr(I − Pc)ATPr + (I − Pr)(I − Pc)ATPr + 0 = (Pr − Pc)A>Pr + (I − Pc)A>(I − Pr),

using the fact that PcPr = PrPc = Pc since Pc ⊆ Pr. Combining the above, we get that

A = PcAPc + PrA(Pr − Pc) + (I − Pr)A(I − Pc) =

A1 A12 0
0 A2 0
0 A32 A3

 ,
as we needed to show.

Minimal representation. The last part of the proposition is a corollary of Lemma 23. This lemma establishes that the
minimal invariant subspace of A w.r.t. PB and the span of of the Krylov matrix

G =
[
B AB · · · An−1B

]
.

is equal.
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F. Invariant Subspace and Minimal Invariant Subspace
An invariant subspace V of a matrix A ∈ Rn×n satisfies the following definition.

Definition 20 (Invariant Subspace, e.g., (Basile and Marro, 1992), Section 3.2). Let A ∈ Rn×n, and V be a subspace of
Rn. We say that V is an invariant subspace of A if AV ⊆ V .

Instead of relying on the common definition of invariant subspace (see Definition 20) we give an equivalent and algebraic
characterization for this notion. This allows for our proofs to have a more algebraic nature which we found simpler in
several proofs along this work.

Proposition 21 (Equivalent Property of Invariant Subspace). Let A ∈ Rn×n, V be a subspace of Rn and PV ∈ Rn×n be
the orthogonal projection onto V . The subspace V is an invariant subspace w.r.t. A if and only if APV = PVAPV .

Proof. Definition 20→ Proposition 21. Assume that V satisfies Definition 20. We show that it also satisfies Proposition 21.
Let PV be an orthogonal projection on the subspace V , which implies that PV = UU> for some U ∈ RN×dim(V ) with
orthogonal columns. Furthermore, let {ui}dim(V )

i=1 be the set of orthogonal columns. Since ui ∈ V it holds for each ui, since
Definition 20 holds, that

Aui ⊆ V
⇐⇒ Aui = PVAui

→Auiu>i = PVAuiu
>
i . (21)

Summing on all dim(V ) equations we conclude the proof of this part since,

APV =

dim(V )∑
i=1

Auiu
>
i (PV =

∑dim(V )
i=1 uiu

>
i )

=

dim(V )∑
i=1

PVAuiu
>
i (Equation (21))

= PVA

dim(V )∑
i=1

uiu
>
i = PVAPV . (PV =

∑dim(V )
i=1 uiu

>
i )

Proposition 21→ Definition 20. Assume that V satisfies Proposition 21. We show it also satisfies Definition 20. Observe
that by Proposition 21 it holds that PVAPV = APV . Multiplying this relation by any v ∈ V from both sides we get.

APV v = PVAPV v.

Furthermore, by Lemma 24 for any v ∈ V it holds that PV v = v. Thus,

Av = PVAv.

This also implies that Av ∈ V , since, by Lemma 24, any vector that satisfies PV u = u is contained within V , thus, Av ∈ V
since PV (Av) = Av.

The notion of minimal invariant subspace is given in Definition 3. For such a definition to be valid, one needs to show that
the minimal subspace is unique. The following result establishes this fact. That is, the minimal invariant subspace is unique,
and, thus, it is a well defined notion; there are no two minimal invariant subspaces of A w.r.t. a subspace K.

Proposition 22 (Minimal Invariant Subspace is Unique). Let K be a subspace and A ∈ Rn×n. If V1 and V2 are both
minimal invariant subspaces of A w.r.t. K then V1 = V2.

Proof. Assume that V1 6= V2 and both are minimal invariant subspaces of A w.r.t. K. We show there exists a smaller
invariant subspace then both V1 and V2, and, thus, get a contradiction to the assumption V1 6= V2.
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By the requirement (3) of Definition 3 dim(V1) = dim(V2). Thus, the subspaces V1/V2 and V1/V2 are non-empty.
Furthermore, since both are invariant subspaces it holds that

PV1
APV1

= APV1
, and, PV2

APV2
= APV2

. (22)

Let PV1
= PV1∩V2

+ PV1/V2
and PV2

= PV1∩V2
+ PV2/V1

. First, by multiplying the first and second relations of (22) by
PV1∩V2

from the right and using PV1∩V2
PV2/V1

= PV1∩V2
PV1/V2

= 0, since the subspaces are orthogonal, we get

PV1APV1∩V2 = APV1∩V2 (23)
PV2APV1∩V2 = APV1∩V2

which implies that

PV1
APV1∩V2

= PV2
APV1∩V2

.

Multiplying this relation by PV1/V2
from the left and using PV1/V2

PV1 = P 2
V1/V2

= PV1/V2
and PV1/V2

PV2
= 0 we get

PV1/V2
APV1∩V2 = 0. (24)

This relation, together with (23) implies the following.

APV1∩V2
= PV1

APV1∩V2
(Equation (23))

= (PV1∩V2
+ PV1/V2

)APV1∩V2

= PV1∩V2
APV1∩V2

. (Linearity and Equation (24))

These relations imply that
APV1∩V2

= PV1∩V2
APV1∩V2

,

i.e., V1 ∩ V2 is an invariant subspace of A w.r.t. to K. Observe that K ⊆ V1 ∩ V2: both V1 and V2 includes the subspace K,
by definition, and, thus, their intersection includes K. Hence, we found an invariant subspace of A, V1 ∩ V1, that includes
K, and is strictly smaller than V1, since V1/V2 is non empty. Since dim(V1) = dim(V2) it also implies that V1 ∩ V2 has
smaller dimension than V2 as well. This implies a contradiction, since we assumed that V1 and V2 are minimal subspace of
A w.r.t. K.

The next result establishes a relation between the minimal invariant subspace w.r.t. an initial subspace and the span of
a Krylov matrix. This allows us to draw a correspondence between the notion of minimal invariant subspace and, e.g.,
controllable subspace.

Lemma 23 (Equivalent of the Span of Krlyov Matrices and Minimal Invariant Subspace). Let A ∈ Rn×n, B ∈ Rn×m and

G =
[
B AB · · · An−1B

]
.

Then, the span of G and the minimal invariant subspace of A w.r.t. B are equal.

Proof. Let B = UΛV > be the SVD decomposition of B. Then, let PB = UU> and let VB be the span of B.

GPB =
[
PB APB · · · An−1PB

]
,

and observe that the span of G and GPB is equal. Let Vc and Vm be the span of GPB and the span of the minimal invariant
subspace of A w.r.t. VB .
Vc ⊆ Vm. Since the minimal invariant subspace is an invariant subspace w.r.t. PB (that is PmPB = PB) it satisfies that

APB = PmAPB , and APm = PmAPm.

This implies that for any n

An−1PB = An−1PmAPmPB = An−2PmAPmAPB = · · · (PmAPm)nPnB .
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Hence,

GPB =
[
PB APB · · · An−1PB

]
= PmGPB ,

which implies that Vc ⊆ Vm.

Vm ⊆ Vc. Since Vc is the span of GPB it holds that

GPB = PcGPB (25)

This relation implies that for all i ∈ [n− 1] ∪ {0}

AiPB = PcA
iPB . (26)

Observe that by the Cayley Hamilton theorem, the nth power can be written as the following sum, for some set of coefficients

AnPB =

n−1∑
i=0

αiA
iPB

=

n−1∑
i=0

αiPcA
iPB (By (25))

= Pc

n−1∑
i=0

αiA
iPB = PcA

nPB (27)

Thus, together with (26), we get that for all i ∈ [n] ∪ {0}

AiPB = PcA
iPB . (28)

Observe that

AGPB = APcGPB (By (25))

=
[
APB A2PB · · · AnPB

]
= Pc

[
APB A2PB · · · AnPB

]
(By (28))

= PcA
[
PB APB · · · An−1PB

]
= PcAGPB .

Since GPBG
†
PB

= U>Σ1/2V TV Σ−1/2U> = UU> = Pc the above relation implies that

APc = PcAPc, (29)

by multiplying by G†PB from the RHS. By Proposition 21 this suggests that Pc is an invariant subspace.

From the above, we get that Vc is an invariant subspace. Furthermore, due to the form of GPB , it must contain the span of B,
VB . Since the minimal invariant subspace Vm is the smallest subspace that contains VB and is an invariant subspace w.r.t. A,
we get that Vm ⊆ Vc. This conclude the proof since it holds that Vm ⊆ Vc and Vc ⊆ Vm, which implies that Vm = Vc.

F.1. Linear Algebra Facts

Lemma 24. Let PV be an orthogonal projection onto V . Then, v ∈ V if and only if

PV v = v.

Proof. →. We prove that PV v = v implies that v ∈ V . Write PV = UU> where U is a matrix with orthonormal columns
{ui}dim(V )

i=1 and ui span V . With this notation, PV v = v implies that

v =

dim(V )∑
i=1

〈ui, v〉ui,
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hence, v is in the span of V since we can write it as v =
∑dim(V )
i=1 αiui and {ui}dim(V )

i=1 span V .

←. We prove that if v ∈ V then PV v = v. Since v ∈ V then it can be written as a linear combination of {ui}dim(V )
i=1 ,

v =

dim(V )∑
i=1

αiui.

Since PV ui = ui and by the linearity of orthogonal projection we conclude the proof since

PV v =

dim(V )∑
i=1

αiPV ui =

dim(V )∑
i=1

αiui = v.
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G. Learning Sparse LQRs in Partially Controllable Systems
We now establish the correctness of Algorithm 1 given an (ε, δ) element-wise oracle (see Definition 6).

Theorem 7 (Learning the PC-LQ). Fix ε, δ > 0. Assume access to an entrywise estimator of (A,B) with parameters
(
√
ε/ (2s(s+ du)), δ), and that Assumption 1 holds. Then, if ε < 1/||P?,1:2||10

op, with probability greater than 1 − δ

Algorithm 1 outputs a policy K̄ such that

J?(K̄) ≤ J? +O(||P?,1:2||8opε).

Proof. Consequence of thresholded estimation. Assume that Â and B̂ is an (ε, δ) entrywise estimator Definition 6 of A
and B, and condition on the event it satisfies the entrywise estimation property. Then, the soft thresholded matrices (Ā, B̄)

of (Â, B̂) satisfy that

∀i, j ∈ [d], k ∈ [du] : A(i, j) = 0→ Ā(i, j) = 0, and B(i, k) = 0→ B̄(i, k) = 0.

By this property, and since the true dynamics is of the form given in Proposition 4, the estimates Ā, B̄ can be written as
follows

Ā = PIcĀPIc + PIr Ā(PIr − PIc) + (I − PIr )Ā(I − PIc), B̄ = PIB B̄. (30)

Invariance argument for estimated system. Let K?(L̄) be the optimal policy of the LQR system L̄ =
(
Ā, B̄, Id

)
. This

LQR system is also a PC-LQ system by comparing (30) and the form supplied in Proposition 4. Observe that L̄ is a
stabilizable PC-LQ.

1. The system that contains the first two blocks of L̄ is stabilizable by utilizing the perturbation result of (Simchowitz and
Foster, 2020) as we formally establish below in (∗stb).

2. The uncontrolled and non-relevant system (I − PIr )Ā(I − PIr ) is stable since

||(I − PIr )Ā(I − PIr )||∞ ≤ ||(I − PIr )A(I − PIr )||∞ ≤ 1.

The first inequality holds due the soft thresholding which implies that |Ā(i, j)| ≤ |A(i, j)| which leads to the inequality.
The second inequality holds by Assumption 1. Since ρ((I − PIr )Ā(I − PIr )) ≤ ||(I − PIr )Ā(I − PIr )||∞ ≤ 1 we
get that uncontrolled and non-relevant is stable.

By the first and second statement of Theorem 1 the optimal policy is invariant under a change in the dynamics and cost. Let
L̄inv =

(
Āinv, B̄, I1:2

)
Āinv = PIcĀPIc + PIr Ā(PIr − PIc), B̄ = PIB B̄,

that is, when we set (I − PIr )Ā(I − PIc) = 0, and the cost

I1:2 =

Isc 0 0
0 Ise 0
0 0 0

 ,
that is, we set the cost of the third block to zero (I1:2 is a subset of I1+ defined in Theorem 1). By Theorem 1 it holds that

K?(L̄) = K?(L̄inv). (31)

Invariance argument for the true system. By again applying the first and second statement of Theorem 1, we get that the
optimal policy of the true system is invariant when transforming it to the LQR system Linv = (Ainv, B, I1:2) where

Ainv = PIcAPIc + PIrA(PIr − PIc), B = PIBB.



Sparsity in Partially Controllable Linear Systems

That is,

K?(L) = K?(Linv). (32)

Perturbation result on invariant systems. We now apply a perturbation result of (Simchowitz and Foster, 2020), Theorem
5 (which we partially restate in Theorem 25 for convenience) on the invariant systems L̄inv and Linv. First, observe that for
both L̄inv, Linv the optimal value has the following form

P =

 P1 P12 0
P12 P2 0
0 0 0

 ,
since the cost of the third block is zero I1:2, and the dynamics of the third row and column is zero on the invariant
systems Linv and L̄inv. Thus, we can eliminate the third row and third columns of the LQR systems L̄inv Linv and apply a
perturbation bound on the smaller system. Let L̄inv,1:2, Linv,1:2 be this restriction.

Observe that the errors of L̄inv,1:2 relatively to Linv,1:2 scales with
√
s(s+ du)ε, i.e.,

||Āinv,1:2 −Ainv,1:2||F = ||ĀPIc (Ā−A)PIc + PIr (Ā−A)(PIr − PIc)||F ≤
√

2sε

||B̄1:2 −B1:2||F ≤
√

2sduε,

where the
√

2 factor comes from the soft thresholding operations together with the (ε, δ) element-wise estimation of (A,B).
Setting ε =

√
ε′/2s(s+ du) in the element-wise estimation of (A,B), and renaming ε′ as ε, we get that

max
{
||Āinv,1:2 −Ainv,1:2||F , ||B̄ −B||F

}
≤
√
ε

max
{
||Āinv,1:2 −Ainv,1:2||op, ||B̄ −B||op

}
≤ max

{
||Āinv,1:2 −Ainv,1:2||F , ||B̄ −B||F

}
≤
√
ε,

since for any matrix ||A||op ≤ ||A||F .

By Theorem 5 of (Simchowitz and Foster, 2020) (see Theorem 25) we get that if
√
ε ≤ 54||P?(Linv,1:2)||5op then the optimal

policies of L̄inv,1:2 and Linv,1:2 are close and both system are stabilizable (specifically, the first two block of the estimated
system L̄inv,1:2 is stable as was needed to show in (∗stb)). That is,

J?(K?(L̄inv,1:2);Linv,1:2) ≤ J?(K?(Linv,1:2);Linv,1:2) + 2Cest(A,B)ε, (33)

where Cest(A,B) = 142||P?(Linv)||8op.

Since the optimal policies of the system L, Linv,1:2 and L̄, L̄inv,1:2 is invariant, the above implies that,

J?(K?(L̄);Linv,1:2) = J?(K?(L̄inv,1:2);Linv,1:2) (By (31))
≤ J?(K?(Linv,1:2);Linv,1:2) + 2Cest(A,B)ε (By (33))
= J?(K?(L);Linv,1:2) + 2Cest(A,B)ε. (By (32))

Lastly, since the difference in values between the invariant and original system is a constant, that does not depend on the
policy, by the first statement of Theorem 1, it holds that

J?(K?(L̄);Linv,1:2) = J?(K?(L̄);L) + C = J?(K?(L̄)) + C

J?(K?(L);Linv,1:2) = J?(K?(L);L) + C = J? + C.

Combining the above yields that

J?(K?(L̄)) ≤ J? + 2Cest(A,B)ε.

Theorem 25 ((Simchowitz and Foster, 2020), Theorem 5). Let L = (A,B, Id) be a stabilizable system. Given an

alternative pair of matrices L̄ = (Ā, B̄, Id), for each ◦ ∈ {op, F} define ε◦ = max
{
||A− Â||◦, ||B − B̂||◦

}
. Then, if

εop ≤ 1/54||P?||5op

J?(K?(L̄)) ≤ J? + CestJε
2
F ,

where Cest = 142||P?||8.



Sparsity in Partially Controllable Linear Systems

H. Learning Element-wise Estimates of a Matrix
H.1. Diagonal Covariance Matrix

In this section, we analyze the sample complexity of of obtaining an (ε, δ) element-wise good estimate of a matrix assuming

that the covariance matrix of x0 is diagonal. Before presenting the results, we define the quantity γd,δ ≡
√
Cd log

(
1
δ

)
,

where C = ||xi||ψ is the subgaussian parameters of xi and is bounded for Gaussian distribution by a constant. This quantity
controls the concentration of the covariance estimation and is defined in Lemma 42
Proposition 26 (Entrywise estimation with diagonal covariance). Assume that x0 ∼ N (0, σ0Id) and that Assumption 1

holds. Denote σeff = 1 +Amax
√
s+

(
1 +Bmax

√
du
)

((σ/σ0) ∨ σ) . Then, given N = O

(
log( dδ )σ2

eff

ε2

)
samples (6) is an

entrywise estimator of (A,B) with parameters (ε, δ).

This result is a direct corollary of Lemma 27 as we now show.

Proof. Observe that we apply random inputs of the form u0 ∼ N (0, Id), that x0 ∼ N (0, σ0Id) and that ξ is σ subgaussian.
Thus,

x1 = Ax0 +Bu0 + ξ. (34)

Estimation of A. The estimator of A is given by

Â =
1

Nσ2
0

∑
n

x1,nx
T
0,n,

where, by (34)

x1,n = Ax0,n + ξB,n

and ξB,n = ξ0 + Bu0,n. Observe that u0 and x0 are i.i.d., and, for any i, ξB,n(i) is a zero mean σB sub gaussian noise
where

σB =
√
σ2 + ||B(i, ·)||22 ≤

√
σ2 +B2

maxdu

Applying Lemma 27 directly implies that

P
(
∀i, j ∈ [d] :

∣∣∣Â(i, j)−A(i, j)
∣∣∣ ≥ 5γ2,δ/(6d2)(σB + σ0 maxi ||A(i, ·)||2

σ0

√
N

)
≤ δ.

Estimation of B. The analysis is similar to the first part. The estimator of B is given by

B̂ =
1

N

∑
n

x1,nu
T
0,n.

By (34), we see that x1,n can be written as

x1,n = Bu0,n + ξA,n,

and ξA,n = ξ0 +Ax0,n. Since x0 and u0 are i.i.d., and for any i it holds that ξA,n(i) is zero mean σA sub gaussian noise
where

σA =
√
σ2 + ||A(i, ·)||22 ≤

√
σ2 +A2

maxs+ 1,

since if i is in the third block it holds that
∑
j(A3(i, j))2 ≤

(∑
j |A3(i, j)|

)
≤ 1 by Assumption 1. Applying Lemma 27

directly implies that

P
(
∀i ∈ [d], j ∈ [du] :

∣∣∣B̂(i, j)−B(i, j)
∣∣∣ ≥ 5γ2,δ/(6d2)(σA + maxi ||B(i, ·)||2√

N

)
≤ δ.

Taking a union bound concludes the proof.
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Lemma 27 (Elementwise Convergence of second-moment Based Estimation). Let ε, δ > 0. Let the plug-in estimator of A
be given as

Â =
1

σ2
0N

N∑
i=1

x1,nx
>
0,n,

where x1 = Ax0 + ξ, x0 ∼ N (0, σ2
0I) and for any i ∈ [d] it holds that ξ(i) is σ sub gaussian. Then,

P
(
∀i, j ∈ [d] : |Â(i, j)−A(i, j)| ≥

5γ2,δ/(6d2)(σ + σ0||A(i, ·)||2)

σ0

√
N

)
≤ δ.

Proof. Observe that

Â = A+
1

N

∑
n

A

(
x0,nx

>
0,n

σ2
0

− I

)
︸ ︷︷ ︸

(i)

+
1

σ2
0N

∑
n

ξnx
>
0,n︸ ︷︷ ︸

(ii)

(35)

We get a point-wise bound for each one of the terms to conclude the proof.
Term (i). Let zn = 1

σ0
x0,n and observe it is N (0, Id) gaussian random vector. Fix i, j ∈ [d]. It holds that the i, j entry of

term (i) can be written as follows.[
1

N

∑
n

A(znz
>
n − I)

]
ij

(36)

=
1

N

∑
n

∑
m6=j

A(i,m)zn(m)zn(j)︸ ︷︷ ︸
(i)

+
1

N

∑
i

A(i, j)(zn(j)2 − 1)︸ ︷︷ ︸
(ii)

. (37)

To bound the first term of (37), we write it as follows

1

N

∑
n

∑
m6=k

A(i,m)zn(m)zn(j) =
1

N

∑
n

〈A(i, [d]/j), z([d]/j)〉 zn(j).

Observe that E[〈A(i, [d]/j), z([d]/j)〉 zn(j)] = E[〈A(i, [d]/j), z([d]/j)〉]E[zn(j)] since the first term the vector z([d]/j)
does not contain zn(j), and, thus, the two are independent. By Lemma 28 we get that with probability at least 1− δ it holds
that ∣∣∣∣∣∣ 1

N

∑
n

∑
m 6=j

A(i,m)x0,n(m)x0,n(j)

∣∣∣∣∣∣ =

∣∣∣∣∣ 1

N

∑
n

〈A(i, [d]/j), zn([d]/k)〉 zn(j)

∣∣∣∣∣ ≤ 3||A(i, [d]/j)||2γ2,δ/3√
N

,

for N ≥ γ2,δ/3.

We bound the second term of (37) by directly applying Lemma 42 by which∣∣∣∣∣ 1

N

∑
n

(zn(j)2 − 1)

∣∣∣∣∣ ≤ γ1,δ |A(i, j)|√
N

,

with probability greater than 1− δ for N ≥ γ1,δ. By taking the union bound on the two events and on all i, j ∈ [d] we get
that for all i, j ∈ [d]∣∣∣∣∣∣Akl

[
1

N

∑
n

A(znz
>
n − I)

]
ij

∣∣∣∣∣∣ ≤ 3γ2,δ/(6d2)(|A(i, j)|+ ||A(i, [d]/j)||2√
N

≤
5γ2,δ/(6d2)||A(i, ·)||2√

N
,
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with probability greater than 1− δ. The last inequality follows from Jensen’s inequality,

ai +

√∑
j 6=i

a2
j =

√
a2
i +

√∑
j 6=i

a2
j ≤
√

2

√∑
i

a2
j ,

since
√
c1 +

√
c2 ≤

√
2
√
c1 + c2.

Term (ii). See that | 1
N

∑
n ξn(i)x0,n(j)| can be bounded by a direct application of Lemma 43 since ξ, x0,n are independent.

Specifically, with probability greater than 1− δ it holds that∣∣∣∣∣ 1

Nσ2
0

∑
n

ξn(i)x0,n(j)

∣∣∣∣∣ ≤ 3σγ2,δ/(6d2)

σ0

√
N

for all i, j ∈ [d] by applying the union bound.

Combining the two bounds. By a union bound on the events by which terms (i) and (ii) are bounded, we get that for
N ≥ γd it holds that

P
(
∀i, j ∈ [d] :

∣∣∣Â(i, j)−A(i, j)
∣∣∣ ≥ 5γ2,δ/(6d2)(σ + σ0||A(i, ·)||2)

σ0

√
N

)
≤ δ.

Lemma 28. Let {xn}Nn=1 be an i.i.d. vector such that xn ∼ N (0, σxId), and let {yn}Nn=1 be i.i.d. σy subgaussian, zero
mean, random variables and assume that N ≥ γ2,δ/3. Let a ∈ Rd. Then,

P

(∣∣∣∣∣ 1

N

∑
n

〈a, xn〉 yn

∣∣∣∣∣ ≥ 3σxσy||a||2γ2,δ/3√
N

)
≤ δ.

with probability greater than 1− δ.

This result is a direct application of Lemma 43 as we now show.

Proof. Observe that z1,n = 1
σx||a||2 〈a, xn〉 , z2,n = 1

σy
ni are both 1-sub-gaussian random variable with zero mean. Thus,

to prove this result we can bound

P

(∣∣∣∣∣ 1

N

∑
n

〈a, xn〉 yn

∣∣∣∣∣ ≥ 3σxσy||a||2γ2,δ/3√
N

)
= P

(∣∣∣∣∣ 1

N

∑
i

z1,nz2,n

∣∣∣∣∣ ≥ 3γ2,δ/3√
N

)
,

where both z1,n and z2,n are independent. Thus, we can apply Lemma 43 while setting d1 = d2 = 1 and conclude the
proof.



Sparsity in Partially Controllable Linear Systems

Algorithm 5 Semiparametric Least Squares
1: Require: Number of samples N > 0, row and column indices i, j ∈ [d]

2: Sample {(yn, x1,n, x2,n)}2Nn=1

3: Estimate cross correlation L̂ =
(∑N

n=1 x1,nx
>
2,n

)(∑N
n=1 x2,nx

>
2,n

)†
4: Estimate conditional output ĉ =

(∑N
n=1 x2,nx

>
2,n

)† (∑N
n=1 ynx2,n

)
5: Estimate ŵ through plug-in

ŵ =

(
2N∑

n=N+1

(x1,n − L̂x2,n)(x1,n − L̂x2,n)>

)†( 2N∑
n=N+1

(yn − 〈ĉ, x2,n〉) (x1,n − L̂x2,n)

)

6: Output: ŵ

H.2. Positive Definite Covariance Matrix

We now analyze the sample complexity of obtaining an element-wise good estimation of a matrix assuming that the
covariance matrix of x0 is PD. This result is a corollary of a careful semiparametric LS analysis we supply in the next
section.

Corollary 29 (Element-wise Estimate, PD Covariance). Assume x0 ∼ N (0,Σ) and that λmin(Σ) > 0. Denote σ2
c =

A2
maxλmax(Σ) + σ2. Then, if N ≥ O

((
σ2
c/λmin(Σ) ∨ 1

)
d log

(
d
δ

))
, and

N = O

(
σ2 log( dδ )
ε2λmin(Σ) +

d(σ2
c∨σc) log( dδ )
ε
√
λmin(Σ)

)
, then the semiparametric LS yields an entrywise estimate of A with parameters

(ε, δ).

Proof. Fix an i, j ∈ [d]. For any such i, j we can estimate A(i, j) via a semiparametric LS where the model is

x1(i) = A(i, j)x0(j) + 〈A(i, [d]/j), x0([d]/j)〉+ ξi.

Applying Proposition 9 and setting dw = 1, de = d − 1 ≤ d and |w?| = |A(i, j)| ≤ Amax yields the bound for any any
fixed i, j ∈ [d]. Applying the union bound on all i, j ∈ [d] concludes the proof for estimating matrix A.

H.2.1. SEMIPARAMETRIC LEAST SQUARES FOR LINEAR MODEL

Consider the following model

y = 〈w?, x1〉+ 〈e?, x2〉+ ε, (38)

where x1 ∈ Rdw , x2 ∈ Rde and ε is a zero mean σ sub-gaussian noise. Furthermore, assume that the covariance matrix
of [x1 x2] is PD, that is Σ = E

[
[x1 x2]>[x1 x2]

]
is PD. Our goal is to recover w? by accessing tuples of {y, x1, x2},

and, to achieve improved rates relatively to estimation of the entire vector [w? e?].

Observe that would x1, x2 be uncorrelated, LS regression of y given x1 achieves our goal. With this observation, a natural
first step would be to orthogonalize the model as we now show. Since x = (x1, x2) is normally distributed it holds that

E[x1|x2] = Σ12Σ−1
2 x2 ≡ L?x2, (39)

where L? ∈ Rdw×de , from which we get, by linearity of expectation, that

E[y|x2] = 〈w?, L?x2〉+ 〈e?, x2〉 ≡ 〈c?, x2〉 , (40)

where c? = LT? w? + e?. Using this, the model (38) can be written as follows.

y = 〈w?, x1〉+ 〈e?, x2〉+ ε

= 〈w?, (x1 − L?x2)〉+ 〈c?, x2〉+ ε. (41)
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Unlike in (38) where the features are not orthogonal E[x1x
>
2 ] = Σ12Σ−1

2 6= 0, in this new representation, the features are
orthogonal since

E[(x1 − L?x2)x>2 ] = 0, (42)

by construction. Thus, if we define z1 = x1 − L?x2 and z2 = x2 we get that (41) is given by

y = 〈w?, z1〉+ 〈c?, z2〉+ ε,

where z1, z2 are orthogonal and their covariance matrix is given by

Covz1 = E[(x1 − L?x2)(x1 − L?x2)>] = Σ1 − Σ12Σ−1
2 Σ>12 ≡ Σ/Σ2,

Covz2 = Σ2, (43)

where Σ/Σ2 is the known as the Schur complement.

Importantly, would we be given L? and c?, we can get an unbiased estimate of w? using the data set {(yn, x1,n, x2,n)}Nn=1
through an ordinary least-squares approach,

ŵ =

(
2N∑

n=N+1

(x1,n − L?x2,n)(x1,n − L?x2,n)>

)†( 2N∑
n=N+1

(yn − 〈c?, x2,n〉) (x1,n − L?x2,n)

)
. (44)

It can be shown that E[ŵ] = w? when the design matrix VN =
∑N
n=1(x1,n − L?x2,n)(x1,n − L?x2,n)> is PD. This

fact, motivates us to study the finite sample performance of this approach when both L? and c? are estimated from data
(Algorithm 5). In the next section, we study this estimator without any assumption besides of positive minimal eigenvalue of
the covariance matrix of x = (x1, x2).

H.2.2. FINITE SAMPLE ANALYSIS: SEMIPARAMETRIC LS

We are now ready to analyze the performance of Algorithm 5. Relying on the OLS (44), Algorithm 5 splits the data in two,
with the first dataset it estimates L? and c?. With the second dataset, it solves the OLS (44) in which the exact L? and c? are
replaced by their estimators.

The following lemma establishes a finite performance guarantee of Algorithm 5. Importantly, we see that there’s only a
lower order dependence in de which we suffer due to the need to estimate L? and c?.

Proposition 30 (Semiparametric Least-Squares). Let δ ∈ (0, e−1). Consider model (8) and assume that Σ is PD. Denote
σ2
c = ||w?||2Σ/Σ2

+ σ2. Then, if N ≥ O
((
σ2
c/λmin(Σ)

)
∨ 1
)
ddw log

(
d
δ

)
, with probability 1− δ, the semiparametric LS

estimator ŵ of w? satisfies

||w? − ŵ||2 ≤

O

√σ2dw log
(

1
δ

)
Nλmin(Σ)

+

(
σ2
c ∨ σc

)
ddw log

(
dw
δ

)
N
√
λmin(Σ)

 .

Overview of the analysis of Proposition 9 . We decompose the error into three terms in (48). The first term is of
dimension s (as oppose to d) and is bounded via standard concentrations for least-squares (Hsu et al., 2012a). The second
and third terms are errors we suffer due to in-exact estimation of L? and c?.

Importantly, we bound the errors in the estimates of L? and c? in weighted norms. Specifically, we show we can bound

||Σ/Σ−1/2
2 (L̂− L?)Σ1/2

2 ||op and ||Σ1/2
2 (ĉ− c?)||2

by a term which is independent of minimal eigenvalues of Σ or Σ/Σ2. With this at hand, and by further careful analysis, we
show, that the second and third terms in (48) can be bounded by terms that are independent of minimal eigenvalues. The
final result follows by relating the minimal and eigenvalues of Σ/Σ2 to the of Σ, supplied in (Smith, 1992).
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Proof. The OLS solution ŵ satisfies the following relation

2N∑
n=N+1

1

N

[(
x1,n − L̂x2,n

)(
x1,n − L̂x2,n

)]>
(w? − ŵ)

=

2N∑
n=N+1

1

N

(
x1,n − L̂x2,n

)(
yn −

〈
w?, x1,n − L̂x2,n

〉
− 〈ĉ, x2,n〉

)
. (45)

Let

ẑ1,n(L̂) = x1,n − L̂x2,n, z1,n = x1,n − L?x2,n, z2,n = x2,n

and define the design matrix as

VN =
1

N

2N∑
n=N+1

ẑ1,n(L̂)ẑ1,n(L̂)>.

By multiplying both sides of this relation by Σ/Σ2(L̂)−1/2 = E[ẑ1,n(L̂)ẑ1,n(L̂)>] and by some additional algebraic
manipulations, it can be shown that (45) implies that

Σ/Σ2(L̂)−1/2VN (w? − ŵ)

= Σ/Σ2(L̂)−1/2
N∑
i=1

1

N

(
x1,n − L̂x2,n

)
(yi − 〈w?, x1,n − L?x2,n〉 − 〈c?, x2,n〉)

+ Σ/Σ2(L̂)−1/2
N∑
i=1

1

N
(x1,n − L?x2,n)

〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
+ Σ/Σ2(L̂)−1/2

N∑
i=1

1

N

(
(L̂− L?)x2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
= Σ/Σ2(L̂)−1/2

N∑
i=1

1

N
ẑ1,n(L̂)εn

+ Σ/Σ2(L̂)−1/2
N∑
i=1

1

N
z1,n

〈
(c? − ĉ) + (L̂− L?)>w?, z2,n

〉
+ Σ/Σ2(L̂)−1/2

N∑
i=1

1

N

(
(L̂− L?)z2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, z2,n

〉
(46)

where the last relation holds since yi − 〈w?, x1,n − L?x2,n〉 − 〈c?, x2,n〉 = εn due to the model assumption (41). Observe
we obtained a vector equality of the form

a = b1 + b2 + b3

where a, b1, b2, b3 ∈ Rdw . This equality implies that

||a||2 = ||b1 + b2 + b3||2 ≤ ||b1||2 + ||b2||2 + ||b3||2 (47)
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due to the triangle inequality. Hence, the vector equality in (46) together with (47) implies that

||Σ/Σ2(L̂)−1/2VN (ŵ − w?)||2

= ||
N∑
i=1

1

N
ẑ1,n(L̂)εn||Σ/Σ2(L̂)−1︸ ︷︷ ︸

(i)

+ ||
N∑
i=1

1

N
z1,n

〈
(c? − ĉ) + (L̂− L?)>w?, z2,n

〉
||Σ/Σ2(L̂)−1︸ ︷︷ ︸

(ii)

+ ||
N∑
i=1

1

N

(
(L̂− L?)z2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, z2,n

〉
||Σ/Σ2(L̂)−1︸ ︷︷ ︸

(iii)

. (48)

We bound each one of these terms by Lemma 33, Lemma 34 and Lemma 35. We verify the conditions of these lemmas hold.

1. N ≥ 9γ2
d,δ ≥ γd,δ , by assumption and since δ ∈ (0, e−1) (see that 9γ2

d,δ = Θ(d log( 1
δ ))).

2. By Lemma 31

||Σ1/2
2 ((c? − ĉ) + (L̂− L?)>w?)||

≤ ||Σ1/2
2 ((c? − ĉ)||2||Σ1/2

2 (L̂− L?)>Σ/Σ
−1/2
2 ||op||Σ1/2

2 w?||2

≤ 10σc

√
ddw log

(
dw
δ

)
N

= ∆

and by Lemma 32

|| (Σ/Σ2)
−1/2

(L̂− L?)Σ1/2
2 ||op ≤ 5σc

√
ddw log

(
dw
δ

)
N

= ∆L = ∆/2.

with probability greater than 1− δ. Thus, we approximate c?, L? in the scaled norms by the covariance matrices Σ2

and Σ/Σ2.

3. Since ∆2
L = 25σ2

cddw log
(
dw
δ

)
/N it holds that forN ≥ 50σ2

cddw log
(
dw
δ

)
/λmin(Σ) the covariance matrix Σ/Σ2(L̂)

is PD, and specifically,

λmin(Σ/Σ2(L̂)) ≥ λmin(Σ/Σ2)/2 > λmin(Σ)/2 > 0, (49)

where the first relation holds by Lemma 36 while setting ∆2
L = λmin(Σ/Σ2)/2, and the second relation by standard

fact on the Schur complement of a matrix (see (Smith, 1992), Theorem 5).

4. For N ≥ 50σ2
cddw log

(
dw
δ

)
/λmin(Σ/Σ2) by the third relation of Lemma 36 we get that

||
(

Σ/Σ2(L̂)
)−1/2

Σ/Σ
1/2
2 ||op ≤

√
2.

Observe that by taking

N ≥ O
((
σ2
c/λmin(Σ) ∨ 1

)
ddw log

(
dw
δ

))
, (50)

we satisfy all the requirements on the sample size.

Applying the union bound on all the above and scaling δ ← δ/3 we get that all the events hold with probability greater
than 1− δ. We refer to this event as the first good event G1. We can now apply Lemma 33, Lemma 34 and Lemma 35 and
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bound (48) conditioning on G1. By applying these lemmas and using the union bound we get that with probability greater
than 1− δ

||Σ/Σ2(L̂)−1/2VN (ŵ − w?)||2

≤ 3σ

√
dw log

(
6
δ

)
N

+
5∆γd,δ/9√

N
+

5∆2/2γd,δ/9√
N

+ ∆2

≤ 3σ

√
dw log

(
6
δ

)
N

+ 50γd,δ/9σc

√
dwd log

(
6dw
δ

)
N2

+
250γd,δ/9σ

2
cddw log

(
6dw
δ

)
N3/2

+
100σ2

cddw log
(

6dw
δ

)
N

(51)

by plugging the form of ∆, ∆L and using de + dw = d.

Finally, we translate this bound to a bound on ||ŵ − w?||Σ/Σ2(L̂) by applying Lemma 39. We now verify the conditions of
this lemma.

1. The matrix Σ/Σ2(L̂) is PD by (49).

2. The empirical covariance is concentrated around the true one,

||
(

Σ/Σ2(L̂)
)−1/2

VN

(
Σ/Σ2(L̂)

)−1/2

− I||op ≤
γde,δ√
N
≤ 1

3
, (52)

with probability greater than 1− δ by Lemma 42, and the second inequality holds since N ≥ 9γ2
d,δ ≥ 9γ2

de,δ
.

Applying Lemma 39 with c = 1/3, while using the bound in (51) we get

||(ŵ − w?)||Σ/Σ2(L̂)

≤ 6σ

√
dw log

(
6
δ

)
N

+
80γd,δ/9σc

√
dwd log

(
6dw
δ

)
N

+
400γd,δ/9σ

2
cddw log

(
6dw
δ

)
N3/2

+
150σ2

cddw log
(

6dw
δ

)
N

.

Furthermore, observe that

λmin(Σ/Σ2(L̂)) ≥ 1

2
λmin(Σ/Σ2) ≥ λmin(Σ)

where the first relation holds by, and the second by identifies of the Schur complement of a PD matrix (49) and the second
relation by (Smith, 1992), Theorem 5. Thus,

||(ŵ − w?)||2 ≤
√

2√
λmin(Σ)

||(ŵ − w?)||Σ/Σ2(L̂)

≤ 1√
λmin(Σ)

9

√
σ2dw log

(
1
δ

)
N

+
400γd,δ/9σ

2
cddw log

(
dw
δ

)
N3/2

+
230

(
σ2
c ∨ σc

)
ddw log

(
9dw
δ

)
N

 . (53)

Lastly, by the choice of N given in (50) and the definition of γd,δ/9 = O(
√
d log

(
1
δ

)
) (see Lemma 42) it holds that,

γd,δ√
N
≤ O(1).

Thus, the last two term of (53) are related by a multiplicative constant factor. This concludes the proof.

H.2.3. ANALYSIS OF THE FIRST PHASE ERRORS

Lemma 31 (Sample Complexity of Learning c?). Let δ ∈ (0, e−1) and let Σ2 = E[x2x
>
2 ]. Assume that N ≥ 9γ2

de,δ
. Then,

with probability greater than 1− δ it holds that

||Σ1/2
2 (ĉ− c?)||2 ≤ 5σc

√
de log

(
2
δ

)
N

,

where σ2
c = ||w?||2Σ/Σ2

+ σ2.
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Proof. This result is a direct application of Proposition 41 which establishes performance guarantee on the OLS. We show
that y = 〈c?, x2〉+ ε to apply this result. See that

yn = E[y|x2,n] + E[y|x2,n]− yn = 〈c?, x2〉+ εc,n

where εc,n = yn − 〈c?, x2,n〉 is a σc =
√
||w?||2Σ/Σ2

+ σ2 sub gaussian, zero mean random variable. Indeed,

E[εc,n] = E[yn − 〈c?, x2,n〉] = E[yn − E[yn|x2,n]] = 0.

To see it is a σc sub gaussian observe that

εc,n = yn − 〈c?, x2,n〉 = ||x1,n − L?x2,n, w?||+ εn.

Thus, and due to the independence of ε and (x1, x2) we get

V ar(εc,n) = V ar(〈x1,n − L?x2,n, w?〉) + V ar(εn)

= V ar(
〈

(Σ/Σ2)
−1/2

(x1,n − L?x2,n), (Σ/Σ2)
1/2

w?

〉
) + σ2

= ||Σ/Σ1/2
2 w?||2 + σ2 = ||w?||2Σ/Σ2

+ σ2.

Thus, the claim follows from Proposition 41.

Lemma 32 (Sample Complexity of Learning L?). Let δ ∈ (0, e−1) and let Σ2 = E[x2x
>
2 ]. Assume that N ≥ 9γ2

de,δ
. Let

the OLS estimate of L? be

L̂ =
1

N1

N1∑
n=1

x1,nx
>
2,nV

†
N1,x2

.

Then, with probability greater than 1− δ it holds that

||Σ/Σ−1/2
2 (L̂− L?)Σ1/2

2 ||op ≤ 5

√
dwde log

(
2dw
δ

)
N

.

Proof. We apply the concentration result on the OLS estimator, Proposition 41. To see it is applicable, we reduce this
problem to a single parameter estimation. First, bound the operator norm by the Frobenius norm. Let ei ∈ Rdw be a one hot
vector with one at its ith entry. Then,

||Σ/Σ−1/2
2 (L̂− L?)Σ1/2

2 ||2op ≤ ||Σ/Σ
−1/2
2 (L̂− L?)Σ1/2

2 ||2F =

dw∑
i=1

||e>i
(

Σ/Σ
−1/2
2 (L̂− L?)Σ1/2

2

)
||22. (54)

Observe that the following vector equality holds by the model assumption (39).

x1 = E[x1|x2] + x1 − E[x1|x2] = L?x2 + (x1 − L?x2), (55)

where E[x1 − L?x2] = 0, Cov(x1 − L?x2) = Σ/Σ2 (see (43)). Multiplying (55) from the left by e>i (Σ/Σ2)
−1/2, we get

that for any i ∈ [dw]

yn,i ≡ e>i (Σ/Σ2)
−1/2

x1,n = e>i (Σ/Σ2)
−1/2

L?x2 + e>i εn = 〈βi, x2,n〉+ εn,i,

where

βi = e>i (Σ/Σ2)
−1/2

L?,

εn,i = e>i (Σ/Σ2)
−1/2

(x1 − L?x2),
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and εn,i is zero mean with a unit variance, since,

E[εn,i] = e>i (Σ/Σ2)
−1/2 E[x1 − L?x2] = 0

V ar(εn) = e>i (Σ/Σ2)
−1/2

(Σ/Σ2) (Σ/Σ2)
−1/2

ei = 1. (56)

Observe that the ordinary least square estimator of β>i is given by the following equivalent forms

β̂>i =

N∑
n=1

yn,ix
>
2,nV

†
N,2

=

N∑
n=1

e>i (Σ/Σ2)
−1/2

x1,nx
>
2,nV

†
N,2

= e>i (Σ/Σ2)
−1/2

L̂N .

By applying the concentration result for OLS, Proposition 41, and applying the union bound, we get that for all i ∈ [dw],
assuming N ≥ 9γ2

d,δ

||e>i (Σ/Σ2)
−1/2

(L̂N − L?)|| = ||(β̂i − βi)>|| ≤ 5σ2
i

de log
(
dw
δ

)
N

≤ 5
de log

(
dw
δ

)
N

.

Thus,

(54) =

dw∑
i=1

||e>i
(

Σ/Σ
−1/2
2 (L̂− L?)Σ1/2

2

)
||22

≤
dw∑
i=1

25σi,lde log
(
dw
δ

)
N

=
25dwde log

(
dw
δ

)
N

, (By (56) σi,l = 1 for all i ∈ [dw])

which concludes the proof.

H.2.4. ANALYSIS OF THE SECOND PHASE ERRORS

Lemma 33 (Bound on First Term of Proposition 9). Let δ ∈ (0, e−1). Assume that Σ/Σ2(L̂) is invertible. Then, with
probability greater then 1− δ it holds that

|| 1

N

∑
n

(
x1,n − L̂x2,n

)
εn||Σ/Σ2(L̂)−1 ≤ 3σ

√
dw log

(
1
δ

)
N

.

Proof. This term cab be directly bounded by applying Lemma 38. Let zn = 1√
N

(x1,n − L̂x2,n) and define ZN ∈ RN×dw

as the matrix with zi as its rows. Observe that with this notation VN =
∑
n znz

>
n = Z>NZN . Furthermore, define ξN ∈ RN

as a vector with εn in its rows. The following relations hold

|| 1

N

∑
n

(
x1,n − L̂x2,n

)
εn||2Σ/Σ2(L̂)−1 = ||Σ/Σ2(L̂)−1/2Z>NξN ||2.

With this form of writing || 1
N

∑
n

(
x1,n − L̂x2,n

)
εn||2Σ/Σ2(L̂)−1

, we see it can be bounded by applying Lemma 38.

Lemma 34 (Bound on Second Term of Proposition 9). Let δ ∈ (0, e−1). Assume the following holds.

1. N ≥ γd,δ .
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2. Σ/Σ2(L̂) is invertible and ||Σ/Σ2(L̂)−1/2Σ/Σ
1/2
2 ||op ≤

√
2.

3. ||Σ1/2
2 ((c? − ĉ) + (L̂− L?)>w?)|| ≤ ∆.

Then, with probability greater then 1− δ it holds that

|| 1

N

N∑
i=1

(x1,n − L?x2,n)
〈

(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ2(L̂)−1 ≤

5∆γd,δ/3√
N

.

Proof. First, observe that the following relation hold

|| 1

N

N∑
i=1

(x1,n − L?x2,n)
〈

(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ2(L̂)−1

≤ || 1

N

N∑
i=1

(x1,n − L?x2,n)
〈

(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ−1

2
||Σ/Σ2(L̂)−1/2Σ/Σ

1/2
2 ||

≤
√

2|| 1

N

N∑
i=1

(x1,n − L?x2,n)
〈

(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ−1

2
(By assumption)

≤
√

2

N
||

N∑
i=1

(x1,n − L?x2,n)
〈

(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ−1

2

=

√
2∆

N
||

N∑
i=1

Σ/Σ
−1/2
2 (x1,n − L?x2,n) (Σ

−1/2
2 x2,n)>||op, (57)

where the last relation holds since ||Ab||22 ≤ ||b||22||A||2op, and since ||Σ1/2
2 ((c?− ĉ) + (L̂−L?)>w?)||2 ≤ ∆ by assumption.

We now bound (57).

Let z1 = Σ/Σ2(x1,n−L?x2,n) and z2 = Σ
−1/2
2 x2,n and observe that z1 ∼ N (0, Idw), z2 ∼ N (0, Ide) and are independent

random vectors since E[z1z
>
2 ] = 0 (see (42)). Thus, by Lemma 43, for N ≥ γd,δ/3, the following bound holds with

probability greater than 1− δ

(57) =

√
2∆

N
||

N∑
i=1

z1,nz
>
2,n||op ≤

5∆γd,δ/3√
N

.

Lemma 35 (Bound on Third Term of Proposition 9). Let δ ∈ (0, e−1). Assume the following holds.

1. N ≥ γd,δ/3

2. Σ/Σ2(L̂) is invertible and ||Σ/Σ2(L̂)−1/2Σ/Σ
1/2
2 ||op ≤

√
2.

3. ||Σ1/2
2 ((c? − ĉ) + (L̂− L?)>w?)|| ≤ ∆, and || (Σ/Σ2)

−1/2
(L̂− L?)Σ1/2

2 ||op ≤ ∆L.

Then, with probability greater than 1− δ, it holds that

|| 1

N

N∑
i=1

(
(L̂− L?)x2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ2(L̂)−1 ≤

5∆L∆γde,δ/3√
N

+
√

2∆L∆.
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Proof. The following relations hold.

|| 1

N

N∑
i=1

(
(L̂− L?)x2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ2(L̂)−1

≤ || 1

N

N∑
i=1

(
(L̂− L?)x2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ−1

2
||Σ/Σ2(L̂)−1/2Σ/Σ

1/2
2 ||op

≤
√

2|| 1

N

N∑
i=1

(
(L̂− L?)x2,n

)〈
(c? − ĉ) + (L̂− L?)>w?, x2,n

〉
||Σ/Σ−1

2
(By assumption)

=
√

2||
(

Σ/Σ
−1/2
2 (L̂− L?)Σ1/2

2

) 1

N

N∑
i=1

(
Σ
−1/2
2 x2,n

)(
Σ
−1/2
2 x2,n

)> (
Σ

1/2
2 (c? − ĉ) + (L̂− L?)>w?

)
||2

≤
√

2∆L∆||
N∑
i=1

(
Σ
−1/2
2 x2,n

)(
Σ
−1/2
2 x2,n

)>
||op

≤
√

2∆L∆||
N∑
i=1

(
Σ
−1/2
2 x2,n

)(
Σ
−1/2
2 x2,n

)>
− Ide ||op +

√
2∆L∆

≤
5∆L∆γde,δ/3√

N
+
√

2∆L∆.

where the last relation holds with probability greater than 1− δ by the concentration of the empirical covariance matrix (see
Lemma 42) for N ≥ γd,δ ≥ γde,δ , while observing that Σ

−1/2
2 x2,n ∼ N (0, Ide).

Lemma 36 (Lower Order Bound on the Design Matrix of the Perturbed Least Square). Let ||(L? − L̂)Σ
1/2
2 ||op ≤ ∆L.

Furthermore,

Σ/Σ2 = E
[
(x1 − L?x2)(x1 − L?x2)>

]
Σ/Σ2(L̂) = E

[
(x1 − L̂x2)(x1 − L̂x2)>

]
.

Then, the following relations hold.

1. ||Σ/Σ2 − Σ/Σ2(L̂)||op ≤ ∆2
L.

2. λmin(Σ/Σ2(L̂)) ≥ λmin(Σ/Σ2)−∆2
L.

3. Assuming
(
∆2
L/λmin(Σ/Σ2)

)
< 1 then

||
(

Σ/Σ2(L̂)
)−1/2

Σ/Σ
1/2
2 ||op ≤

√
(1− (∆2

L/λmin(Σ/Σ2)))−1.

Proof. First relation. By definition,

Σ/Σ2 − Σ/Σ2(L̂) = E[(x1 − L?x2)(x1 − L?x2)>]− E[(x1 − L̂x2)(x1 − L̂x2)>]

= E[(x1 − L?x2)(x1 − L?x2)>]− E[(x1 − L?x2 − (L̂− L?)x2)(x1 − L?x2 − (L̂− L?)x2)>] (58)

Since (a+ b)(a+ b)> = aa> + bb> + ab> + ba>, defining a = x1 − L?x2, b = −(L̂− L?)x2, we get that

(58) = −E[(x1 − L?x2)((L̂− L?)x2)>]− E[(L̂− L?)x2)(x1 − L?x2)>] + (L̂− L?)E[x2x
>
2 ](L̂− L?)>

= (L̂− L?)Σ2(L̂− L?)>,

since

E[(x1 − L?x2)((L̂− L?)x2)>] = E[E[(x1 − L?x2)|x2](L̂− L?)x2)>] = E[(L? − L̂)x2((L? − L?)x2)>] = 0,



Sparsity in Partially Controllable Linear Systems

and, similarly, E[((L̂− L?)x2)(x1 − L?x2)>] = 0. We get that

||Σ/Σ2 − Σ/Σ2(L̂)||op = ||(L̂− L?)Σ2(L̂− L?)||op

= ||((L̂− L?)Σ1/2
2 )((L̂− L?)Σ1/2

2 )>||op

≤ ||((L̂− L?)Σ1/2
2 )||2op ≤ ∆2

L.

Second relation. Direct application of Weyl’s inequality.

Third relation. Let ∆ = Σ/Σ
−1/2
2

(
Σ/Σ2(L̂)− Σ/Σ2

)
Σ/Σ

−1/2
2 . Observe that

||∆||op ≤
1

λmin(Σ/Σ2)
||Σ/Σ2(L̂)− Σ/Σ2||op (|| · ||op is submultiplicative)

≤ ∆2
L

λmin(Σ/Σ2)
. (First relation of the lemma)

Thus, since ||∆||op ≤ ∆2
L

λmin(Σ/Σ2) < 1 by assumption, we can apply Lemma 40 and conclude the proof.

H.2.5. LEAST SQUARE GENERAL RESULTS AND TOOLS

Theorem 37 ((Hsu et al., 2012a), Theorem 1). Let A ∈ Rm×N be a matrix, and let K = A>A. Suppose tat ξ = (ε1, .., εN )
is a zero-mean and σ sub-gaussian vector such that for some σ ≥ 0 it holds that E[exp(v>ξ)] ≤ exp

(
||v||22σ2/2

)
for all

v ∈ RN . Then, for any t > 0,

Pr
(
||Aξ||22 ≥ σ2

(
tr (K) + 2

√
tr (K2) t+ 2||K||t

))
≤ exp (−t) .

The following lemma will be useful for our analysis.

Lemma 38 (Noise Concentration for the OLS). Let XN ∈ RN×d be a matrix with
{

1√
N
xn

}N
n=1

in its rows, VN =

1
N

∑N
n=1 xnx

>
n = XT

NXN and ξN ∈ RN be a matrix with {εn}Nn=1 in its rows. Furthermore, assume that (i) εn and xn
are independent, (ii) ||Σ−1/2V

1/2
N ||2op ≤ 3/2, and (iii) Σ = E[xnx

>
n ] is PD. Then, with probability greater than 1− δ it

holds that

1√
N
||Σ−1/2X>NξN ||2 ≤ 3σ

√
d log

(
1
δ

)
N

.

Proof. Let PXN ∈ Rd×N be the projection on the column space of X>N . Observe that, by definition, X>N = PXNX
>
N and

PXN = V
1/2
N (V †N )1/2, and thus

(62) =
1√
N
||Σ−1/2X>NξN ||2

=
1√
N
||Σ−1/2V

1/2
N (V †N )1/2X>NξN ||2

≤ 1√
N
||Σ−1/2V

1/2
N ||op||X>NξN ||V †N . (59)

The first term is bounded by 3/2 by assumption. We now bound the second term in (59). It holds that

||X>NξN ||2V †N =
1

N
ξ>NXN (XT

NXN )†X>NξN . (60)

Furthermore, it can be verified that tr
(
XN (XT

NXN )†X>N
)
≤ d and ||XN (XT

NXN )†X>N ||op ≤ 1. Hence, Theorem 37
of (Hsu et al., 2012a), is applicable. Applying this result and assuming δ ∈ (0, e−1), we get

||X>NξN ||V †N ≤ 2σ

√
d log

(
1
δ

)
N

. (61)

with probability greater than 1− δ. This concludes the proof of the lemma.
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The following lemma allows us to translate performance of the OLS under the empirical design matrix to the performance
under the expected empirical design matrix, i.e., the covariance matrix.

Lemma 39 (Translating Empirical to Expected Performance). Let w ∈ Rd be a vector, VN = 1
N

∑N
n=1 xnx

>
n and

Σ = E[xx>] be a PD matrix. Let ∆ = Σ−1/2VNΣ−1/2 − I and assume that

1. ||Σ−1/2VNw|| ≤ ε.

2. ||Σ−1/2VNΣ−1/2 − I||op ≤ c < 1.

Then, it holds that ||w||Σ ≤ ε
1−c .

Proof. We prove this result by standard analysis and by applying the assumptions. The following relations hold.

||w||Σ = ||Σ1/2w||2
≤ ||∆Σ1/2w||2 + ||Σ−1/2VNΣ−1/2Σ1/2w||2 (Triangle inequality)

= ||∆Σ1/2w||2 + ||Σ−1/2VNw||2
≤ ||∆Σ1/2w||2 + ε (By assumption)

≤ ||∆||op||Σ1/2w||2 + ε (Submultiplicative property of norm)
= c||w||Σ + ε. (By assumption)

Rearranging yields the result.

Lemma 40 (Relative Spectral Norm Error, (Hsu et al., 2012b), Lemma 3). Let Σ1,Σ2 be a PD matrices. Let ∆ =

Σ
−1/2
1 (Σ2 − Σ1) Σ

−1/2
1 . If ||∆|| < 1 then

||Σ1/2
1 Σ

−1/2
2 ||2op = ||Σ−1/2

2 Σ
1/2
1 ||2op = ||Σ1/2

1 Σ−1
2 Σ

1/2
1 ||op ≤

1

1− ||∆||op
.

Proof. The first equality follows from the fact that ||A||op = λmax(ATA) = λmax(ATA) = ||A>||op. The second equality
follows from the fact that ||ATA|| = λmax((ATA)2) = λmax(ATA)2 = ||A||2. The third inequality is proved in (Hsu
et al., 2012b), Lemma 3.

Proposition 41 (Ordinary Least Squares: In-Distribution Error). Let δ ∈ (0, e−1). Let {xn, yn}Nn=1 be a data set where
xn ∈ Rd, yn ∈ R, and assume that yn = 〈xn, β?〉+ εn where εn is zero mean and σ sub-gaussian. Let Σ = E[xx>]. Let β̂
be the solution of the ordinary least square objective

β̂ = V †NX
>
NYN

Then, assuming that N ≥ 9γ2
d,δ where γd,δ is defined in Lemma 42, with probability greater than 1− δ

||β? − β̂||Σ ≤ 5σ

√
d log

(
2
δ

)
N

.

and ||Σ−1/2VNΣ−1/2 − I||op ≤ 1
3 .

Proof. Let XN ∈ RN×d be a matrix with
{

1√
N
xn

}N
n=1

in its rows, VN = 1
N

∑N
n=1 xnx

>
n = XT

NXN and ξN ∈ RN be a

matrix with {εn}Nn=1 in its rows. Let β̂ be the OLS, i.e., it is the minimal norm solution that satisfies

VN (β? − β̂) =
1√
N
X>NξN .
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Multiply both sides of the above equation by Σ−1/2 (where Σ is PD by assumption). We get that

Σ−1/2VN (β? − β̂) = Σ−1/2X>NξN .

Taking the norm of both sides and by the triangle inequality we get

||Σ−1/2VN (β? − β̂)||2 =
1√
N
||Σ−1/2X>NξN ||. (62)

We bound this term by applying Lemma 36. To apply this result we bound, with high probability, ||Σ−1/2V
1/2
N ||2op ≤ 3

2 by
the concentration of the empirical covariance matrix. It holds that

||Σ−1/2V
1/2
N ||2op = ||Σ−1/2VNΣ−1/2||op

≤ 1 + ||Σ−1/2VNΣ−1/2 − I||op

= 1 + || 1

N

N∑
n=1

(Σ−1/2xn)(Σ−1/2xn)> − I||op

≤ 1 +
γd,δ√
N
, (63)

where the last relation holds with probability greater than 1 − δ by Lemma 42 since Σ−1/2xn ∼ N (0, Id). Thus, if
N ≥ 9γ2

d,δ it holds that ||Σ−1/2V
1/2
N ||2op ≤ 3

2 . Hence, conditioning on this event, Lemma 36 is applicable. Thus, with
probability greater than 1− 2δ

||Σ−1/2V
1/2
N ||2op = (62) ≤ 3σ

√
d log

(
1
δ

)
N

. (64)

We now translate this bound to a bound w.r.t. ||β? − β̂||Σ. To do so, we apply Lemma 39. Observe that (i) Σ is PD by
assumption, (ii) conditioning on the good event ||Σ−1/2VN (β? − β̂)||2 is bounded in (64), and, (iii) conditioning on the
good event ||Σ−1/2VNΣ−1/2 − I|| ≤ 1

3 (63) and by the choice of N . Thus, by Lemma 39 and setting c = 1/3, we get that
conditioning on the good event that holds with probability greater than 1− 2δ, for N ≥ 9γ2

d,δ ,

||β? − β̂||Σ ≤ 5σ

√
d log

(
1
δ

)
N

.
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I. Matrix Concentration Results
Lemma 42 (Covariance Estimation for Sub-Gaussian Distributions, Corollary 5.50, (Vershynin, 2010) and Remark 5.51).
Let δ ∈ (0, e−1). Consider a sub-gaussian distribution in Rd with covariance E[xx>] = I . Let ΣN = 1

N

∑N
n=1 xnx

>
n be

the empirical covariance matrix. Then, with probability greater then 1− δ it holds that

||ΣN − I||op ≤
γd,δ√
N
.

for

N ≥ γd,δ ≡

√
Cd log

(
1

δ

)
where C = CK depends only on the sub-gaussian norm K = ||xi||ψ2 and C is an absolute constant if x ∼ N (0, ID).

Lemma 43. Let z1 ∼ N (0, Id1), z2 ∼ N (0, Id2) be independent random variables and d = d1 + d2. Assume that
N ≥ γd,δ/3 where γd,δ is defined in Lemma 42. Then,

P

(
|| 1

N

N∑
n=1

z1,nz
>
2,n||op ≤

3γd,δ/3√
N

)
≥ 1− δ.

Proof. Let En = z1,nz
>
2,n. Define the hermitian dilation of E to be

Hn =

[
0 En
E>n 0

]
,

and see that (e.g., (Tropp, 2012), section 2.6)

|| 1

N

∑
n

En||op = λmax

(
1

N

∑
n

Hn

)
. (65)

Hence, instead of bounding the first we can bound the latter.

Let H1,n, H2,n, Hf,n ∈ Rd×d be defined as follows,

H1,n =

[
z1,nz

>
1,n 0

0 0

]
, H2,n =

[
0 0
0 z2,nz

>
2,n

]
, Hf,n =

[
z1,nz

>
1,n z1,nz

>
2,n

z2,nz
>
1,n z2,nz

>
2,n

]
.

With these definitions we get that
Hn = Hf,n −H1,n −H2,n.

Furthermore, since E[Hn] = 0 due to the independence of z1 and z2, and since they are assumed to be zero mean, we get
that

1

N

∑
n

Hn =
1

N

∑
n

Hf,n −H1,n −H2,n

=
1

N

∑
n

Hf,n − E[Hf,n]− 1

N

∑
n

H1,n − E[H1,n]− 1

N

∑
n

H2,n − E[H1,n].

(Since E[Hn] = E[Hf,n −H1,n −H2,n] = 0)

Hence, we can bound λmax

(
1
N

∑
nHn

)
by the following sum

λmax

(
1

N

∑
n

Hn

)
(66)

≤ λmax

(
1

N

∑
n

Hf,n − E[Hf,n]

)
+ λmax

(
1

N

∑
n

H1,n − E[H1,n]

)
+ λmax

(
1

N

∑
n

H2,n − E[H1,n]

)
(67)
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since λmax(A+B) ≤ λmax(A) + λmax(B)3.

Observe that each one of the three summands is the deviation of the empirical covariance from its average. Applying
Lemma 42 and by applying the union bound we get that with probability greater than 1− 3δ, and assuming that N ≥ γd,δ√

N

(67) ≤ (||Σ||γd,δ + ||Σ1||γd1,δ + ||Σ2||γd2,δ) /
√
N ≤ 3||Σ||γd,δ/

√
N = 3γd,δ/

√
N,

where the last relation holds since Σ1,Σ2 ≤ Σ = I and since γd,δ is increasing in d. Finally, setting δ ← δ/3 yields the
result.

3E.g., by using the variational form of maximal eigenvalue and since maxx:||x||2=1(x
TAx + xTBx) ≤ maxx:||x||2=1 x

TAx +

maxx:||x||2=1 x
TBx
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J. Experiment Details
In this section, we complete the details for the experimental setup outlined in Section 6.

Synthetic PC-LQs. We constructed a family of PC-LQ problems, parameterized by (sc, se, du, d). The diagonal blocks
A1 ∈ Rsc×sc , A2 ∈ Rse×se , A3 ∈ Rd−sc−se,d−sc−se were generated by sampling each entry from N (0, 1), dividing by
the spectral radius (i.e. the largest modulus of complex eigenvalues), then multiplying by the desired spectral radius. We
set ρ(A1) = 1, to make the controllable part of the system marginally stable, and set ρ(A2) = ρ(A3) = 0.9. The matrices
A12, A32, and B1 were obtained by sampling each entry from N (0, 1). Finally, for the LQR cost matrices, we selected
Q = I1+ and R = Idu .

System identification. Two system identification methods for estimating A were compared: ordinary least squares
regression from x1 onto x0 (with the least-Frobenius norm solution), and the soft-thresholded semiparametric least squares
estimator from Algorithm 1, with a choice of ε = 0.1.4 Fixing a sample size N , we sampled all x0 ∼ N (0, I) i.i.d., and
x1 = Ax0 + η0, where η0 ∼ N (0, I).

Certainty-equivalent control. We plugged these (Â, B) into SciPy’s discrete algebraic Riccati equation solver, which
outputs the fixed-solution solution P? under the nominal dynamics; then, the LQR cost of the derived controller on the true
system was measured; if this was finite and within a factor of 1.1 of the optimal cost on the true dynamics, we called this
trial (indexed by an independent sample) a success: the learned controller stabilized this marginally stable system.

We varied the sample size N between 100 and 1000 in increments of 20, and varied d ∈ {20, 50, 100, 150}, fixing
sc = se = 5, du = 1. Figure 1 shows the fraction of successful trials over 100 repetitions; error bars show normal
approximation-derived standard deviations. All experiments took around 2 hours on a single 2.3 GHz Intel i7 CPU machine.

4With these synthetic systems, Algorithm 1 performed similarly with the thresholded OLS estimator.


