
Efficient Representation Learning via Adaptive Context Pooling
Supplementary Material

Chen Huang 1 Walter Talbott 1 Navdeep Jaitly 1 Josh Susskind 1

1. ContextPool in ConvNets
We show our ContextPool module can be easily applied
to convolutional neural networks. A classical ConvNet is
composed of alternating layers of convolution and pooling.
After convolution at each layer (often followed by some
activation function), assume we have a feature map X ∈
Rh×w×c where h,w, c are the height, width, and the number
of channels. For a spatial location (i, j) on the feature map
X , we use xi,j to denote the corresponding feature vector
at that location. The feature map X is then passed to the
pooling layer, which aggregates the contextual information
within a set of local regions R, producing a pooled feature
map Y of smaller size. For the pooling function, common
options include average pooling fave() and max pooling
fmax(). For example, we can have average pooled features
yk as:

yk = fave(X|Rk) =
1

|Rk|
∑

(i,j)∈Rk

xi,j , (1)

where Rk is the pooling region k in feature map X .

There are two main drawbacks with the standard average
pooling function: 1) The pooling region Rk is predefined
(e.g., 3× 3), thus the receptive field remains fixed for each
location. However, this is undesirable to encode the con-
texts or semantics over spatial locations because different
locations may correspond to objects with varying scales. 2)
The pooing function pays equal attention to all positions in
a receptive field, which is usually not the case (Luo et al.,
2016). Our ContextPool method addresses these drawbacks
by using learned pooling weights and support size for each
location, aiming to capture meaningful context with varying
scale.

Specifically, we learn the normalized maps of pooling
weights W ∈ Rh×w and pooling sizes S ∈ Rh×w to-
gether for all positions (see Fig. 1). Both maps are con-
ditioned on the input feature map X , i.e., {W,S} = m(X)

1Apple Inc., Cupertino, United States. Correspondence to:
Chen Huang <chen-huang@apple.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Conv

Input feature map Pooled feature map

⊙
⊙

ContextPool

Pooling
weights W

Gaussian
mask Gk

Si,j

σi,j

Pooling
size S

Figure 1. Illustration of our ContextPool module in ConvNets.

with the same spatial resolution with X . Note the pool-
ing weights W are normalized by a softmax function in
order to apply effective weighting over different positions
during pooling. While we learn normalized pooling size
Si,j ∈ [0, 1] mainly to make its learning invariant to fea-
ture map size. This way, during the actual pooling for
position (i, j), we can easily transform Si,j to the standard
deviation σi,j = r · Si,j · (w + h)/2 of a Gaussian mask
G ∼ N (i, j, σ2

i,j , σ
2
i,j). Here r is an empirically set scalar

(say 0.05), and G ∈ Rh×w imposes spatial locality for
pooling.

Finally, given the pooling weights W and Gaussian mask
Gk for the pooling center k, our ContextPool module ag-
gregates information across all the spatial positions in input
feature map X . In other words, ContextPool operates on
the 2D spatial domain for the 3D input X , and the operation
remains the same across the channel dimension:

yk = fave(X � γ(W)� γ(Gk)) =
∑
i,j

xi,j ·Wi,j ·Gk
i,j ,

(2)
where γ(·) is a broadcasting function to accommodate
element-wise multiplication �. The normalization factor is
set as C(X) =

∑
i,j Wi,j ·Gk

i,j .

Efficient Representation Learning via Adaptive Context Pooling

In practice, the prediction functionm(·) for pooling weights
W and sizes S is implemented by applying two convo-
lutional layers over the feature map X . During training,
the convolutional kernels for both the main network and
ContextPool are learned simultaneously. We show our Con-
textPool is pretty lightweight with small increase in model
size, and is able to consistently improve performance. We
validate this on two common benchmarks for image classifi-
cation, as we now demonstrate.

2. Results on Image Classification
CIFAR-10 dataset We first evaluate ConvNets equipped
with ContextPool (CP) for image classification on CIFAR-
10 dataset (Krizhevsky, 2009). CIFAR-10 consists of 60k
images with 10 classes. We follow the standard training and
testing protocol, using 50k images for training a ResNet (He
et al., 2016) and 10k images for testing.

Table 1 shows the ResNet-44 baseline with regular pooling
function obtains 92.9% accuracy on CIFAR-10. While DCN
and N-Jet-based methods are parameter-efficient when learn-
ing adaptive kernel size using Gaussian derivative filters.
They show success of learning data-dependent receptive
fields, but the performances are not as competitive as those
of other methods. Note the results are from the original
papers using only small model sizes. It remains unclear how
performance scales with increasing model size. On the other
hand, deformable ConvNets (Dai et al., 2017) learn spatial
offsets for the sampling locations of convolution and pooling
operations, offering an alternative way for learning adap-
tive receptive field. We observe that both the deformable
convolution and deformable pooling modules contribute to
compelling results.

In comparison, our CP-improved ResNets achieve a better
trade-off between performance and parameter efficiency
than deformable ConvNets. When applied to the same
ResNet-44 backbone, our CP already achieves a competitive
accuracy of 93.4% at low overhead. We can further improve
accuracy to 93.7% by training a deeper network with CP.
Note the resulting CP-ResNet-46 outperforms deformable
ConvNets with a similar model size.

Lastly, we offer two more variants of ContextPool in the
ConvNet framework. For the first variant, we only learn
adaptive pooling size, with uniform pooling weights (i.e., av-
erage pooling). This baseline is analogous to those learn-
ing methods for pooling region or receptive field (Coates
& Ng, 2011). Another related method is spatial pyramid
pooling (He et al., 2014). But this method is not directly
comparable because it is mainly designed to deal with input
images of varying size. Table 1 (bottom cell) shows that
our pooling size learning performs slightly worse than de-
formable pooling (Dai et al., 2017). More importantly, it is

Table 1. Model size and performance (%) on CIFAR-10. Results
are reported over three runs per setting.

Method Size Accuracy

ResNet-44 (He et al., 2016) 0.66M 92.9
DCN (Tomen et al., 2021) 0.47M 89.7±0.3

N-Jet-ResNet-32 (Pintea et al., 2021) 0.52M 92.3±0.3
Deform ResNet-44 (Pool) (Dai et al., 2017) 0.68M 93.2±0.4

Deform ResNet-44 (Pool+Conv) (Dai et al., 2017) 0.69M 93.5±0.2

CP-ResNet-44 0.68M 93.4±0.3
CP-ResNet-46 0.70M 93.7±0.2

CP-ResNet-44 (learn pooling size only) 0.67M 93.1±0.2
CP-ResNet-44 (pooling weights by fea similarity) 0.67M 93.2±0.2

Table 2. Classification accuracy (%) and model size on ImageNet.

Backbone Method Top-1 Top-5 Size

ResNet-50
baseline 76.5 93.1 26.6M

Deform (Dai et al., 2017) 76.6 93.2 26.8M
CP-baseline 77.3 93.6 26.8M

ResNet-101
baseline 78.4 94.2 45.5M

Deform (Dai et al., 2017) 78.4 94.2 45.8M
CP-baseline 78.9 94.4 45.8M

inferior to our full method due to the lack of dynamic pool-
ing weights. When we replace our learned pooling weights
with those defined by the feature similarity (as done for
transformers in main paper), we see marginal improvements
which indicates the need of pooling weights learning.

ImageNet-1K dataset We further compare our CP-
improved ResNets with the strong baseline of deformable
ConvNets (Dai et al., 2017) on ImageNet-1K dataset. For
a fair comparison, we use the same training and inference
settings as in (Dai et al., 2017). Table 2 illustrates the
validation-set results based on two ResNet backbones. It
can be observed that our CP-ResNets achieve consistent
improvements over both the baseline and deformable Con-
vNets, without large increase in model size. Our hypothesis
is that CP benefits more from its strong context modeling
capability on high-resolution ImageNet images. For future
work, it would be interesting to test our approach on vari-
ous image resolutions or on more types of tasks that have
different needs for a context model.

References
Coates, A. and Ng, A. Selecting receptive fields in deep

networks. In NeurIPS, 2011.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and
Wei, Y. Deformable convolutional networks. In ICCV,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pool-

Efficient Representation Learning via Adaptive Context Pooling

ing in deep convolutional networks for visual recognition.
In ECCV, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. Understanding
the effective receptive field in deep convolutional neural
networks. In NeurIPS, 2016.

Pintea, S., Tömen, N., Goes, S., Loog, M., and van Gemert,
J. Resolution learning in deep convolutional networks
using scale-space theory. IEEE Transactions on Image
Processing, 30:8342 – 8353, 2021.

Tomen, N., Pintea, S.-L., and Van Gemert, J. Deep continu-
ous networks. In ICML, 2021.

