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ABSTRACT

Deep metric learning (DML) enables learning with less supervision through its
emphasis on the similarity structure of representations. There has been much
work on improving generalization of DML in settings like zero-shot retrieval,
but little is known about its implications for fairness. In this paper, we are the
first to evaluate state-of-the-art DML methods trained on imbalanced data, and
to show the negative impact these representations have on minority subgroup
performance when used for downstream tasks. In this work, we first define fairness
in DML through an analysis of three properties of the representation space – inter-
class alignment, intra-class alignment, and uniformity – and propose finDML, the
fairness in non-balanced DML benchmark to characterize representation fairness.
Utilizing finDML, we find bias in DML representations to propagate to common
downstream classification tasks. Surprisingly, this bias is propagated even when
training data in the downstream task is re-balanced. To address this problem,
we present Partial Attribute De-correlation (PARADE) to de-correlate feature
representations from sensitive attributes and reduce performance gaps between
subgroups in both embedding space and downstream metrics.

1 INTRODUCTION

Deep metric learning (DML) extends standard metric learning to deep neural networks, where the
goal is to learn metric spaces such that embedded data sample distance is connected to actual semantic
similarities (Globerson & Roweis, 2006; Weinberger et al., 2006; Hoffer & Ailon, 2018; Wang et al.,
2014). The explicit optimization of similarity makes deep metric spaces well suited for usage in
unseen classes, such as zero-shot image or video retrieval or facial re-identification (Milbich et al.,
2021; Roth et al., 2020c; Musgrave et al., 2020; Hoffer & Ailon, 2018; Wang et al., 2014; Schroff
et al., 2015; Wu et al., 2018; Roth et al., 2020c; Brattoli et al., 2020; Hu et al., 2014; Deng et al.,
2019; Liu et al., 2017). However, while DML is effective in establishing notions of similarity, work
describing potential fairness issues is limited to individual fairness in standard metric learning (Ilvento,
2020), disregarding embedding models.

Indeed, the impacts and metrics of fairness are well studied in machine learning (ML) generally,
and representation learning specifically (Dwork et al., 2012; Mehrabi et al., 2019; Locatello
et al., 2019b). This is especially true on high-risk tasks such as facial recognition and judicial
decision-making (Chouldechova, 2017; Berk, 2017), where there are known risks to minoritized sub-
groups (Samadi et al., 2018). Yet, relatively little work has been done in the domain of DML (Rosen-
berg et al., 2021). It is crucial to address this knowledge gap – if DML embeddings are used to create
upstream embeddings that facilitate downstream transfer tasks, biases may propagate unknowingly.

To tackle this issue, this work first proposes a benchmark to characterize fairness in non-balanced
DML - finDML. finDML introduces three subgroup fairness definitions based on feature space
performance metrics – recall@k, alignment and group uniformity. These metrics measure clustering
ability and generalization performance via feature space uniformity. Thus, we select the metrics
for our definitions to enforce independence between inclusion in a particular cluster or class, and
a protected attribute (given the ground-truth label). We leverage existing datasets with fairness
limitations (CelebA (Liu et al., 2015) and LFW (Huang et al., 2007)) and induce imbalance in training
data of standard DML benchmarks, CARS196 (Krause et al., 2013) and CUB200 (Wah et al., 2011),
in order to create an effective benchmark for fairness analysis in DML.
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Making use of finDML, we then perform an evaluation of 11 state-of-the-art (SOTA) DML methods
representing frequently used losses and sampling strategies, including: ranking-based losses (Wang
et al., 2014; Hoffer & Ailon, 2018), proxy-based (Kim et al., 2020) losses, semi-hard sam-
pling (Schroff et al., 2015) and distance-weighted sampling (Wu et al., 2018). Our experiments
suggest that imbalanced data during upstream embedding impacts the fairness of all benchmarks
methods in both upstream embeddings (subgroup gaps up to 21%) as well as downstream classi-
fications (subgroup gaps up to 45.9%). This imbalance is significant even when downstream
classifiers are given access to balanced training data, indicating that data cannot naively be
used to de-bias downstream classifiers from imbalanced embeddings.

Finally, inspired by prior work in DML on multi-feature learning (Milbich et al., 2020), we introduce
PARtial Attribute DE-correlation (PARADE). PARADE addresses imbalance by de-correlating two
learned embeddings: one learnt to represent similarity in class labels, and one learnt to represent
similarity in the values of a sensitive attribute, which is discarded at test-time. This creates a model in
which the ultimate target class embeddings have been de-correlated from the sensitive attributes of the
input. We note that as opposed to previous work on variational latent spaces, PARADE de-correlates
a learned similarity metric. We find that PARADE reduces gaps of SOTA DML methods by up to 2%
downstream in finDML.

In total, our contributions can be summarized as follows:

1. We define finDML; introducing three definitions of fairness in DML to capture multi-
faceted minoritized subgroup performance in upstream embeddings through focus on feature
representation characteristics across subgroups, and five datasets for benchmarking.

2. We analyze SOTA DML methods using finDML, and find that common DML approaches
are significantly impacted by imbalanced data. We show empirically that learned embedding
bias cannot be overcome by naive inclusion of balanced data in downstream classifiers.

3. We present PARADE, a novel a novel adaptation of previous zero-shot generalization
techniques to enhance fairness guarantees through de-correlation of class discriminative
features with sensitive attributes.

2 BACKGROUND

Deep Metric Learning DML extends standard metric learning by fusing feature extraction and
learning a parametrized metric space into one end-to-end learnable setup. In this setting, a large
convolutional network ψ provides the mapping to a feature space Ψ, while a small network f , usually
a single linear layer, generates the final mapping to the metric or embedding space Φ. The overall
mapping from the image space X is thus given by ϕ = f ◦ ψ. Generally, the embedding space is
projected on the unit hypersphere SD−1 through normalization (Weisstein, 2002; Wu et al., 2018;
Roth et al., 2020c; Wang & Isola, 2020) to limit the volume of the representation space with increasing
embedding dimensionality. The embedding network ϕ is then trained to provide a metric space Φ
that operates well under some predefined, usually non-parametric metric such as the Euclidean or
cosine distance defined over Φ.

Typical objectives used to learn such metric spaces range from contrastive ranking-based training
using tuples of data, such as pairwise (Hadsell et al., 2006), triplet- (Schroff et al., 2015; Wu et al.,
2018) or higher-order tuple-based training (Sohn, 2016; Wang et al., 2020a), procedures to bring
down the effective complexity of the tuple space (Schroff et al., 2015; Harwood et al., 2017; Wu
et al., 2018) or the introduction of learnable tuple constituents (Movshovitz-Attias et al., 2017; Qian
et al., 2019; Kim et al., 2020).

More recent work (Milbich et al., 2020; Roth et al., 2020c; Jacob et al., 2019) extends standard DML
training through incorporation of objectives going beyond just sole class label discrimination: e.g.,
through the introduction of artificial samples (Lin et al., 2018; Duan et al., 2018), regularization of
higher-order moments (Jacob et al., 2019), curriculum learning (Zheng et al., 2019; Harwood et al.,
2017; Roth et al., 2020a), knowledge distillation (Roth et al., 2020b) or the inclusion of additional
features (DiVA) to produce diverse and de-correlated representations (Milbich et al., 2020).

DML Evaluation Standard performance measures reflect the goal of DML: namely, optimizing
an embedding space Φ for best transfer to new test classes via learning semantic similarities. As
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Figure 1: a) Visualization of the standard DML pipelines and the aspects of intra-class alignment
and uniformity in the embedding space. b) Infographic of the fairness issue in DML, where learned
representational bias can even transfer to downstream models building on previously learned repre-
sentations. c) Layout of our proposed PARADE approach to better incorporate sensitive attribute
context and improve representational fairness.

immediate applications are commonly found in zero-shot clustering or image retrieval, respective
retrieval and clustering metrics are predominantly utilized for evaluation. Recall@k (Jegou et al.,
2011) or mean average precision measured on recall (Roth et al., 2020c; Musgrave et al., 2020)
typically estimate retrieval performance. Normalized mutual information (NMI) on clustered embed-
dings (Manning et al., 2010) is used as a proxy for clustering quality (see Supplemental for detailed
definitions). We leverage these performance metrics to inform finDML and our experiments.

Fairness in Classification Formalizing fairness in ML continues to be an open problem (Mehrabi
et al., 2019; Chen et al., 2018a; Chouldechova, 2017; Berk, 2017; Locatello et al., 2019b; Choulde-
chova & Roth, 2018; Dwork et al., 2012; Hardt et al., 2016; Zafar et al., 2017). In classification,
definitions for fairness such as demographic parity, equalized odds, and equality of opportunity, rely
on model outputs across the random variables of protected attribute and ground-truth label (Dwork
et al., 2012; Hardt et al., 2016).

Fairness in Representations A more relevant family of fairness definitions for DML would be
those explored in fairness for general representation learning (Edwards & Storkey, 2015; Beutel
et al., 2017; Louizos et al., 2015; Madras et al., 2018). Here, the goal is to learn a fair mapping
from an original domain to a latent domain so that classifiers trained on these representations are
more likely to be agnostic to the sensitive attribute in unknown downstream tasks. This assumption
distinguishes our setting from previous fairness work in which the downstream tasks are known at
train time (Madras et al., 2018; Edwards & Storkey, 2015; Moyer et al., 2018; Song et al., 2019;
Jaiswal et al., 2019). DML differs from this form of representation learning as it aims to learn a
mapping capturing semantic similarity, as opposed to latent space representation.

Earlier works in fair representation learning intended to obfuscate any information about sensitive
attributes to approximately satisfy demographic parity (Zemel et al., 2013) while a wealth of more
recent works focus on using adversarial methods or feature disentanglement in latent spaces of
VAEs (Locatello et al., 2019a; Kingma & Welling, 2013; Gretton et al., 2006; Louizos et al., 2015;
Amini et al., 2019; Alemi et al., 2018; Burgess et al., 2018; Chen et al., 2018b; Kim & Mnih, 2018;
Esmaeili et al., 2019; Song et al., 2019; Gitiaux & Rangwala, 2021; Rodríguez-Gálvez et al., 2020;
Sarhan et al., 2020; Paul & Burlina, 2021; Chakraborty et al., 2020). In this setting, the literature
has focused on optimizing on approximations of the mutual information between representations
and sensitive attributes: maximum mean discrepancy (Gretton et al., 2006) for deterministic or
variational (Li et al., 2014; Louizos et al., 2015) autoencoders (VAEs); cross-entropy of an adversarial
network that predicts sensitive attributes from the representations (Edwards & Storkey, 2015; Xie
et al., 2017; Beutel et al., 2017; Zhang et al., 2018; Madras et al., 2018; Adel et al., 2019; Zhao &
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Gordon, 2019; Xu et al., 2018); balanced error rate on both target loss and adversary loss (Zhao et al.,
2019); Weak-Conditional InfoNCE for conditional contrastive learning (Tsai et al., 2021).

PARADE shares aspects of these previous methods in its choice of de-correlation or disentanglement.
However, PARADE de-correlates the learned similarity metric as opposed to the latent space. In
addition, with DML-specific criteria, PARADE learns similarities over the sensitive attribute while
not directly removing all information about the sensitive attribute, as the sensitive attribute and target
class embeddings share a base network.

3 EXTENDING FAIRNESS TO DML - finDML BENCHMARK

To characterize fairness with finDML, this section introduces the key constituents – definitions to
characterize fairness in embedding spaces and respective benchmark datasets.

3.1 PRELIMINARIES

Our embedding space fairness definitions rely on embedding space metrics adapted from (Wang
& Isola, 2020) and (Roth et al., 2020c), namely alignment and uniformity. Both metrics we use to
characterize embeddings for our definitions in the next section (intra- as well as inter-class alignment
and uniformity) have been successfully linked to generalization performance in contrastive self-
supervised and metric learning models (Wang & Isola, 2020; Roth et al., 2020c; Sinha et al., 2020).
Alignment succinctly captures the similarity structure learned by the representation space with respect
to the target labels through measuring distances between pairs of samples. On the other hand, notions
of uniformity can differ. Uniformity of the sample distribution over the hypersphere has been studied
through the radial basis function (RBF) over pairs of samples. Alternatively, uniformity of the feature
space has been studied through the KL-divergence DKL between the discrete uniform distribution UD

and the sorted singular value distribution Sϕ(X) of the representation space ϕ on dataset X .

UKL(X) = DKL
(
UD,Sϕ(X)

)
(1)

Here, lower scores indicate more significant directions of variance in learned representations. Both
introduced notions of uniformity represent important aspects of the embedding space, but the
computational overhead in computing RBF over all pairs of samples in large datasets makes it
impractical for our uses and is less interpretable than UKL. Therefore, we leave the uniformity metric
utilized in finDML general, but utilize UKL for our experiments.

3.2 DEFINING FAIRNESS

Building on the aforementioned performance metrics, we introduce three definitions for fairness in
the embedding spaces of DML models. As the recall@k and alignment metrics inform inclusion
in an embedded cluster (or class), we follow fair classification literature in the motivation for our
first fairness definition: inclusion in a class should be independent of a protected attribute given the
ground-truth label. Thus, we examine the probability of encountering a data instance of the same
class in a data point’s k-nearest neighbors to form the first definition. The second definition relies
on equal expectation of alignment across sensitive attribute values. Departing from classification
literature, our third definition encapsulates fairness in a task-agnostic sense (as DML is often applied
in such settings): fairness across the “goodness" of the learned features via a uniformity metric.

Let X denote the input data, and A a protected attribute variable. Denote Xa the partition of X
with attribute a ∈ A. To recap common DML terminology, a positive pair of samples is defined as
(x1, x2) ∈ X ×X s.t. the class label of x1 and x2 are identical. A negative pair of samples is defined
as (x1, x2) ∈ X ×X such that the class label of x1 and x2 differ. Let Pa denote the set of all positive
pairs s.t. at least one of x1 or x2 has attribute a ∈ A, and analogously for Na and negative pairs.
Definition 1 (K-Close Fairness). Define NNk : Φ ⊂ SD−1 → P(X) as a function that receives a
point ϕ(x) ∈ Φ and returns a set in the powerset of X , P(X), containing points in X that map to
the k nearest neighbors of ϕ(x) in Φ. Thus, ϕ is k-close fair with respect to attribute A if:

Pr
x∈Xa

(∃x̃ ∈ NNk(ϕ(x))s.t.Y (x̃) = Y (x)) = Pr
x∈Xb

(∃x̃ ∈ NNk(ϕ(x))s.t.Y (x̃) = Y (x)) ∀a, b ∈ A

(2)
Note: the criteria weakens as k increases, similar to recall@k.
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Definition 2 (Alignment). ϕ is fair, according to alignment with respect to attribute A, if:
E(x1,x2)∈Pa

[||ϕ(x1)− ϕ(x2)||2] = E(x1,x2)∈Pb
[||ϕ(x1)− ϕ(x2)||2] (3)

E(x1,x2)∈Na
[||ϕ(x1)− ϕ(x2)||2] = E(x1,x2)∈Nb

[||ϕ(x1)− ϕ(x2)||2] ∀a, b ∈ A (4)
i.e. the expectation of the alignment is equal across domain of A.
Definition 3 (Uniformity Across Groups). ϕ is fair, according to uniformity, and with respect to
attribute A, if the expectation of the uniformity is equal across domain of A:

U(ϕ(Xa)) = U(ϕ(Xb)) ∀a, b ∈ A (5)
where U(·) denotes some measure of uniformity over a set V ∈ SD−1.

3.3 CONSTRUCTED finDML BENCHMARK DATASETS

finDML encompasses existing DML benchmark datasets, CUB200 and CARS196, and facial recogni-
tion datasets, CelebA and LFW (Wah et al., 2011; Krause et al., 2013; Liu et al., 2015; Huang et al.,
2007). For fairness analysis, we investigate bird color in CUB2001, Race in LFW and Skintone in
CelebA (Kumar et al., 2009). A detailed description of dataset and attribute labeling is included in
the Supplemental. To create additional fairness benchmarks, we induce class imbalance in CUB200
and CARS196, as both datasets are naturally balanced w.r.t. class.

Manually Introduced Class Imbalance We introduce imbalance by reducing the number of training
data samples of 50 randomly selected classes by 90% (Imbalanced). We run an experiment with the
original datasets as a balanced control (Balanced) for comparison. In the imbalanced setting, we
adjust (increase) the number of training samples of the majoritized groups to match the number of
datapoints in the balanced control experiments. We average metrics over 10 sets of 50 randomly
selected classes for imbalanced experiments. We use the standard ratio of 50 − 50 for train-test
split of these datasets, but split over number of data points per class, as opposed to splitting over
the classes themselves. The manually imbalanced datasets are used to benchmark standard DML
methods, validate our framework, and analyze downstream effects.

Although dataset imbalance does not constitute the sole source of bias in machine learning applica-
tions, unfairness as a result of imbalance is the most well-understood in the literature (Chen et al.,
2018a). Additionally, we do not assume for our naturally imbalanced datasets, particularly the facial
datasets, that attribute imbalance is the only source of bias we observe.

4 PARTIAL ATTRIBUTE DE-CORRELATION (PARADE)

In this section, we present Partial Attribute De-correlation, or PARADE, in which we incorporate
adversarial separation (Milbich et al., 2020) during training to de-correlate separate embeddings.
We enumerate several significant changes: 1) only target embedding released at test-time; 2) triplet
formation and loss term w.r.t. sensitive attribute; 3) de-correlation with sensitive attribute as opposed
to de-correlation to reduce redundancy in concatenated feature space. These two representations
branch off from the deep metric embedding model at the last layer. The two representations encode
the similarity metrics learned over the sensitive attribute and target class, respectively. The sensitive
attribute embedding layer is discarded at test time. The resulting network expresses a similarity
metric with respect to the target class, de-correlated from the sensitive attribute (Figure 1). Therefore,
PARADE figuratively optimizes the first two fairness definitions proposed in Section 3.2 via an
objective that maximizes independence between the sensitive attribute and target class.

Objective Term Per Embedding To achieve efficient training and de-correlation of the target class
and the sensitive attribute embedding layers, we simultaneously train both layers that branch from
the penultimate layer of the model and de-correlate at each iteration. Because PARADE must learn
one embedding w.r.t. target class (ϕtarg) and one embedding w.r.t. the sensitive attribute (ϕSA), we
introduce separate objectives for each embedding:

Ltarg =
1

N

∑
t∼Ttarg

L(t) LSA =
1

N

∑
t∼TSA

L(t)

1While bird color in CUB200 does not represent a real-world fairness setting, CUB200 is widely used as a
DML benchmark. Thus, a fairness angle allows fairness analysis of previous methods benchmarked on CUB200.
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Figure 2: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for bird color CUB200 experiments: the sensitive attribute embedding (left) and the class label
embedding (right). In the sensitive attribute embedding, both example images are mapped to clusters
with birds of the same plumage (yellow and blue, respectively). Due to de-correlation, in the class
label embedding, the images are separated from the region of space with other birds of the same
plumage, but are still well-clustered, indicating that PARADE can find other attributes to distinguish
these species clusters.

where N is the number of training triplet samples, and L represents a generic loss function, such as
triplet loss (Hoffer & Ailon, 2018). We use t ∼ Ttarg to illustrate sampling over triplets of the form
(xa, xp, xn) where xa and xp are of the same target class and xa and xn are of differing target classes.
Similarly, t ∼ TSA indicates sampling over triplets of the form (xa, xp, xn) where xa and xp are of
the same sensitive attribute subgroup and xa and xn are of differing sensitive attribute subgroups.
See Figure 2 for a t-SNE visualization of the distinct embeddings of PARADE.

Partial De-correlation In order to minimize the correlation between ϕtarg and ϕSA, we use the
adversarial separation (de-correlation) method from (Milbich et al., 2020), which minimizes the
mutual information between a pair of embeddings. The task of mutual information minimization
is accomplished through learning an MLP to maximize the pair’s correlation, c, and consequently
performing a gradient reversal R, which inverts the gradients during backpropagation. The MLP, ξ,
is trained to maximize c(ϕtargi , ϕSA

i ) = ∥R(ϕtargi )
⊙
ξ(R(ϕSA

i ))∥22, s.t.
⊙

denotes element-wise
multiplication. Combining the loss terms results in total loss:

LPARADE = Ltarg + αSALSA − ρ · c(ϕtarg, ϕSA)

where αSA weights the sensitive attribute loss and ρ weights the degree of de-correlation. ρmodulates
the de-correlation term to allow ψ to retain some attribute information (i.e. partial de-correlation).
Thus, the deployed model ϕtarg = ftarg ◦ ψ can retain information about the sensitive attribute in its
feature representations, as αSALSA appears in the loss function back-propagated through the full
model ψ. The extent to which the sensitive attribute affects the output features is controlled by αSA;
we suggest optimizing αSA ∈ (0, 1) and ρ through maximization of worst-group performance (Lahoti
et al., 2020) (See Supplemental C.5 for further analysis of PARADE hyperparameters).

5 EXPERIMENTS

Baseline DML Methods For all datasets, we use a ResNet-50 (He et al., 2016) architecture with best
performing parameters on a validation set (for further implementation details, see Supplemental).
To investigate a sweeping set of frequently used DML methods, we benchmark across a diverse,
representative set of 11 techniques, including: three standard ranking-based losses (margin, triplet,
n-pair, and contrastive) three batch mining strategies (random, semi-hard and distance-weighted
sampling) and three common loss functions (multisimilarity loss, ArcFace loss, for handling facial
datasets, and proxy-based loss, ProxyNCA) (Hoffer & Ailon, 2018; Hadsell et al., 2006; Wu et al.,
2018; Sohn, 2016; Hadsell et al., 2006; Kim et al., 2020; Wang et al., 2020a; Deng et al., 2019; Wu
et al., 2018; Schroff et al., 2015). See Supplementary for more details.
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Fairness Evaluation In the embedding space, we analyze fairness via performance gaps between
minoritized groups and majoritized groups, or worst-group performance gaps (Lahoti et al., 2020).
For fairness of the feature representations, we compute gaps in three metrics: recall@k and NMI
for intra- and inter-class distance (Section 3.2), and the uniformity measure UKL corresponding to
Definition 3 (defined in Section 3.1).

Training and Evaluation on Downstream Classifiers To link fairness performance in the embedding
space to downstream classification (in which more extensive prior work has been completed), we
train downstream classifiers and evaluate classification bias. After training the DML model with
the aforementioned criteria, the network is fixed. The output embeddings from the image training
datasets, in addition to the class labels, are used to train four downstream classification models: logistic
regression (LR), support vector machine (SVM), K-Means (KM), and random forest (RF) (Pedregosa
et al., 2011). In the manually imbalanced upstream setting, we train downstream classifiers on
the original balanced image datasets to ascertain if bias incurred in the embedding can propagate
downstream even if the downstream classifier is trained with real balanced data.

We execute class imbalanced experiments for CARS196 and CUB200 and vary the level of imbalance
between minoritized and majoritized classes in the upstream training set.

PARADE Configuration We test Partial Attribute De-correlation, PARADE, by training models in
the listed settings: manually color imbalanced dataset for CUB200, CelebA and LFW. The attribute
used to train the sensitive attribute embedding for each dataset, and the attribute used for fairness
evaluation. We compare PARADE with margin loss and distance-weighted sampling (Wu et al., 2018)
to standard margin loss and distance-weighted sampling.

6 RESULTS

6.1 SOTA DML METHODS HAVE LARGE FAIRNESS GAPS IN finDML BENCHMARK

Our experiments indicate that current DML methods encounter crucial fairness limitations in the
presence of imbalanced training data. Table 1 (along with a corresponding table for CARS196 in the
Supplemental) demonstrate that gaps in the manually class imbalanced setting are greater than the
balanced control setting. In four combinations of loss functions and sampling strategies, we do not
observe a scenario in which the class imbalanced setting achieves a smaller gap than the control in the
embedding space, nor the downstream classification. This is particularly significant due to the nature
of sampling strategies studied (Wu et al., 2018; Schroff et al., 2015), which batch samples to force
the model to correct “hard" examples. The results validate finDML as a benchmark and framework
for fairness through the lens of well-studied fairness characterization in classification.

Interestingly, Table 1 displays non-negligible gaps in downstream performance metrics recall and
precision even in the balanced control case. This could represent stenography of underlying structures
in the data, such as car color or bird size. More likely, however, these gaps are due to use of macro-
averaging in recall and precision calculations. Nonetheless, the manually class imbalanced settings
consistently produce larger gaps.

6.2 PROPAGATION OF BIAS TO DOWNSTREAM TASKS

The tabular results emphasize a significant result: naive re-balancing with real data downstream cannot
overcome bias incurred in the upstream embedding in any setting studied. Indeed, Table 1 exhibits
propagation of bias from upstream embeddings (trained on imbalanced data) to downstream tasks
(trained on fixed upstream embeddings with a re-balanced dataset). To provide additional context for
the result, we direct to increasing use of DML models as components of larger classification models.
This trend is arising in literature such as supervised contrastive learning, and recent developments
in pre-training and lifting DML models for classification (Khosla et al., 2020). This necessitates
tackling bias in the representation space of DML as opposed to patches downstream, and emphasizes
the importance of defining fairness in this setting as done in our work.

Impact of imbalance degree on lack of fairness Figure 3 shows that gaps in downstream clas-
sification mimic those upstream, even as we vary the level of imbalance introduced when training
the upstream embedding. Here, the random forest classifier sees greater gaps in downstream metrics
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Table 1: Gap study on CUB200-2011. Average gaps in representation space and downstream classifi-
cation (logistic regressor) over 10 seeds between minoritized and majoritized classes in manually
class imbalanced experiments (Imbalanced) and control experiments (Balanced) for CUB200-2011.
Results for CARS196 are available in the supplementary with similar conclusions. Bold represents
larger gap for each method shown (Loss · Batch Mining).

Experiments → Balanced Imbalanced Balanced Imbalanced

Objective → Margin · Distance Margin · Semi-hard

UPSTREAM
EMBEDDING

Recall@1 0.017± 0.007 0.212± 0.029 0.02± 0.007 0.187± 0.031
NMI −0.001± 0.004 0.112± 0.012 −0.004± 0.004 0.092± 0.017
UKL −0.042± 0.003 0.0± 0.002 −0.048± 0.004 0.002± 0.004

DOWNSTREAM
CLASSIFICATION

Precision 0.339± 0.007 0.39± 0.014 0.33± 0.004 0.393± 0.015
Recall 0.36± 0.007 0.424± 0.018 0.351± 0.005 0.43± 0.016

Accuracy 0.014± 0.002 0.131± 0.027 0.016± 0.005 0.131± 0.031

Objective → Triplet · Distance Triplet · Semi-hard

UPSTREAM
EMBEDDING

Recall@1 0.019± 0.006 0.159± 0.031 0.019± 0.006 0.168± 0.036
NMI −0.001± 0.004 0.103± 0.016 −0.004± 0.006 0.082± 0.016
UKL −0.054± 0.006 −0.004± 0.009 −0.051± 0.006 0.014± 0.011

DOWNSTREAM
CLASSIFICATION

Precision 0.336± 0.005 0.41± 0.014 0.338± 0.007 0.384± 0.014
Recall 0.357± 0.004 0.459± 0.016 0.359± 0.007 0.426± 0.016

Accuracy 0.016± 0.003 0.179± 0.031 0.02± 0.005 0.134± 0.031
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Figure 3: Impact of varying imbalance between the minoritized and majoritized classes on upstream
embedding and downstream classifier (RF) in the manually class imbalanced CARS196 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase both
upstream and downstream with more imbalance introduced to the upstream training data.

than the control, even when manual imbalance is set at 40 − 60 upstream, and the downstream
training dataset is balanced. For results with additional downstream classifiers, see Supplemental.
This experiment demonstrates that the propagation of bias to downstream will occur even with lower
levels of imbalance, and does not appear to depend on the downstream classifier chosen.

6.3 REDUCED SUBGROUP GAPS THROUGH PARTIAL DE-CORRELATION WITH SENSITIVE
ATTRIBUTE

Table 2a shows results for performance gaps between relevant subgroups in both facial recognition
datasets. PARADE shows strong results for CUB200 bird color dataset, primarily reducing gaps
downstream and accordingly to recall@1 (Definition 1). PARADE can reliably reduce gaps for
both the representation space and downstream classifiers on LFW. Interestingly, we observe that the
majoritized subgroup (“White") had worst performance of all “Race" subgroups (see Supplemental),
contrary to previous results (Samadi et al., 2018).3 As such, we measure gaps between the worst-
performing subgroup and others.

2Due to the great number of singleton classes in LFW, recall@1 is discarded as a metric.
3Note: minoritized subgroups can still encounter notable bias across other axes more difficult to mea-

sure (Radford & Espenshade, 2014).
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Table 2: Comparison between PARADE and standard losses with distance-weighted sampling of
average gaps in representation space and downstream classification (logistic regressor) over 3 seeds
between minoritized and majoritized groups in (a) facial dataset studies, namely on CelebA (w.r.t.
“Fitzpatrick Skintone") and between worst-performing subgroup and other subgroups in LFW2(w.r.t.
“Race") with Margin loss and (b) bird color experiments for CUB200 image dataset (w.r.t. color) with
Margin and Triplet loss. Bold represents smaller gap (better fairness performance).

(a)

Facial
Datasets

CelebA (skintone) LFW (race)

PARADE Margin · Distance PARADE Margin · Distance

UPSTREAM
EMBEDDING

Recall@1 0.085± 0.009 0.122± 0.005 0.075± 0.014 0.068± 0.013
NMI −0.012± 0.003 −0.002± 0.003 0.041± 0.003 0.048± 0.003
UKL −0.04± 0.011 −0.03± 0.007 0.163± 0.003 0.165± 0.005

DOWNSTREAM
CLASSIFICATION

Precision 0.146± 0.006 0.1± 0.007 0.004± 0.002 0.005± 0.005
Recall 0.141± 0.007 0.098± 0.007 0.003± 0.001 0.007± 0.006

Accuracy 0.131± 0.006 0.082± 0.005 0.009± 0.003 0.012± 0.009

(b)

CUB200-2011
color PARADE (M · D) Margin · Distance PARADE (T · D) Triplet · Distance

UPSTREAM
EMBEDDING

Recall@1 0.172± 0.021 0.176± 0.041 0.172± 0.027 0.195± 0.051
NMI 0.349± 0.031 0.326± 0.184 0.372± 0.291 0.359± 0.024
UKL 0.167± 0.013 0.153± 0.013 0.174± 0.035 0.159± 0.018

DOWNSTREAM
CLASSIFICATION

Precision 0.317± 0.046 0.333± 0.049 0.248± 0.038 0.308± 0.119
Recall 0.352± 0.039 0.363± 0.046 0.276± 0.042 0.337± 0.123

Accuracy 0.163± 0.018 0.153± 0.028 0.148± 0.049 0.154± 0.029

For CelebA, we find for standard methods the minoritized subgroups to generally perform worst.
PARADE excels at gap reduction upstream but encounters larger subgroup gaps downstream com-
pared to standard methods. While PARADE does reduce downstream gaps between light skintones (I,
II, and III), and the two lighter dark skintones (IV, V), gaps increase between lighter skintones and
the darkest skintone (VI) (see Supplemental). Because skintone VI constitutes < 1% of the CelebA
dataset, PARADE is likely not able to learn similarity between faces over attributes besides skintone.
And PARADE is prevented from learning similarities based on skintone due to de-correlation. In
such settings, PARADE could be combined with oversampling minoritized subgroups to ensure better
performance.

In general, the results show promising benefits of PARADE to adequately address and improve on
the challenge of subgroup gaps for DML models used in facial recognition; and in the standard DML
dataset CUB200, for recall@1 upstream (Definition 1) and across metrics downstream (Table 2b).

7 DISCUSSION

In this work, we introduce the finDML benchmark, a framework for fairness in deep metric learning
(§3.2). We demonstrate the fairness limitations of established DML techniques, and the surprising
propagation of embedding space bias to downstream classifiers. Importantly, we find that this bias
cannot be addressed at the level of downstream classifiers but instead needs to be addressed at the
DML stage. We investigate the limit of this propagation in manually introduced imbalance, and
finally show that PARADE can reduce subgroup gaps in several settings.

Limitations PARADE suffers from pitfalls similar to other “fairness with awareness" methods:
PARADE uses information only on pre-defined sensitive attributes and therefore can be unfair w.r.t.
other sensitive attributes. PARADE does have an advantage in addressing the combinatorial number
of attributes considered in multi-attribute fairness through DML, which will scale sub-combinatorially
in time/space complexity. We also note that subgroup gaps are not sufficient to capturing societal
understandings of fairness, and there is no consensus as to how to remedy such gaps (Chouldechova &
Roth, 2018; Dwork et al., 2012; Hardt et al., 2016; Zemel et al., 2013; Zafar et al., 2017). Additionally,
while PARADE intentionally optimizes Definitions 1 and 2, we provide no explicit guarantee and
optimization of uniformity, Definition 3, remains an open problem. Finally, PARADE does incur
slight decrease in overall performance, similar to other methods (Wick et al., 2019) (see Supplemental
for per-subgroup performance and additional fairness-utility trade-off analysis for PARADE).

Code of Ethics Statement The work presented here deals with fairness in deep metric learning.
A portion of our studies in the paper focus on CARS196 and CUB200-2011 datasets, which have
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consistently been used in benchmarking novel DML frameworks (Krause et al., 2013; Wah et al.,
2011). The fairness analysis considered for CUB200-2011 deals with bird color, which does not, to
our knowledge, correspond with any societal problems relating to fairness. Nonetheless, as CUB200-
2011 is used in a litany of papers for SOTA performance comparison, finDML includes CUB200 so
that DML methods can be analyzed w.r.t. fairness on a dataset used in their original paper.

We do include facial recognition datasets and tasks and analyze fairness with respect to facial
attributes. Facial recognition does raise ethical concerns in practice. We note that our paper attempts
to address primary social concerns in facial identity recognition. We do not encourage the task of
facial attribute recognition, and solely use labeled attributes that correspond to known axes of bias
for fairness analysis (e.g. Race and Skintone). As PARADE has solely been tested in two widely
used public facial recognition datasets, we cannot guarantee fairness nor privacy in practical settings
with private facial datasets.

Reproducibility Statement Additional experimental results discussed in the main paper and others
are contained in Supplemental C. Implementation details including attribute information, generation
of attributes, training parameters, metric calculation and gap computation are listed in Supplemental D.
In our zipped supplemental materials file, we include all code used to generate the experiments.
Individual scripts for generation of each experiment are contained in the “experiments" directory of
the code file.
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SUPPLEMENTAL MATERIAL

A ADDITIONAL BACKGROUND

A.1 DEEP METRIC LEARNING DEFINITIONS

Here, we iterate through some common DML criteria and batch mining strategies more formally
than in the main paper. Throughout this section, let X denote the input data, ϕ(X) the embedded
data, Y the class label, and let Y (x) denote the value of the ground truth class label for data instance
x. Denote the set of all positive pairs with respect to class label Y as P = {(x1, x2) ∈ X × X :
Y (x1) = Y (x2), x1 ̸= x2}. Denote the set of all negative pairs with respect to class label Y as
N = {(x1, x2) ∈ X ×X : Y (x1) ̸= Y (x2)}. We use the notation (xa, xp, xn) ∈ X ×X ×X to
denote a triplet with an anchor sample xa, positive sample xp where Y (xa) = Y (xp), and negative
sample xn where Y (xa) ̸= Y (xn).

Batch Sampling and Mining The batch sampling procedure in deep metric learning methods
differ from that of generic deep classifiers in that canonical loss functions require tuples or pairs of
samples in order to utilise ranking objectives as training surrogates to learn an appropriate similarity
metric. To ensure that tuples with positive and negative examples can be extracted from the batch,
the Samples-Per-Class-n (SPC-n) heuristic (see e.g. Roth et al. (2020c)) is generally used, where
commonly n = 2, 4, 8. Given a batch size b, the SPC-n technique randomly selects b/n classes from
which n training samples are then drawn randomly to be included in each batch B.

After feeding the batch through the network, tuples are mined from the batch to use in the loss
function. We refer to mining in this paper either as batch mining or overload the both as batch
sampling terminology. The naive solution to tuple mining is random mining, in which all possible
tuples of the form (xa, xp, xn) are considered and b are randomly chosen from the batch. However,
this method lacks the capacity to utilize valuable information about the current embedding space, and
is prone to significant redundancy in the training signal Schroff et al. (2015); Wu et al. (2018).
Definition 4 (Random Mining). Hu et al. (2014) For each xa ∈ B, we randomly draw a positive
example from {xp ∈ B : Y (xp) = Y (xa), xp ̸= xa} and a negative example from {xn ∈ B :
Y (xn) ̸= Y (xa)} to form the triplet (xa, xp, xn).

Intuitively, this could be mitigated by hard mining heuristics searching for negative samples that are
closer to the anchor sample in the embedding space than positive samples, thereby always ensuring a
significant training signal. Unfortunately, such approaches are prone to heavy overfitting, training
instability and large gradient variance, thereby commonly resulting in less-than-optimal solutions
(see e.g. Schroff et al. (2015); Harwood et al. (2017); Wu et al. (2018)). Recent approaches thus
establish more lenient heuristics, such as through the introduction of slack parameters to the hard
mining objective (e.g. semi-hard mining Schroff et al. (2015) or softhard mining Roth & Brattoli
(2019)).
Definition 5 (Semi-hard Mining). For each xa ∈ B, we randomly draw a positive example from
{xp ∈ B : Y (xp) = Y (xa), xp ̸= xa}, and a negative example from the set

{xn ∈ B : Y (xn) ̸= Y (xa), ∥ϕ(xa)− ϕ(xn)∥22∥ϕ(xa)− ϕ(xp) + γ∥22}
where γ ∈ R is a slack parameter, to form the triplet (xa, xp, xn).

While other adaptive means (e.g. Harwood et al. (2017); Roth et al. (2020a)) have shown strong
performance improvements, modern predefined heuristics such as distance-weighted tuple mining
Wu et al. (2018) offer a better cost-to-performance tradeoff Roth et al. (2020a). Here, the heuristic
leverages the fact that embeddings are commonly normalized to have unit L2 norm for regularization
purposes Wu et al. (2018). This ensures a distribution over a unit hypersphere, in which explicit
pairwise distributions can be established Weisstein (2002); Wu et al. (2018). By inverting this
distribution, distance-weighted mining can thus encourage a much more diverse coverage of tuple
difficulties, improving generalization performance and reducing gradient variance Wu et al. (2018).
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Definition 6 (Distance-weighted). For embedding spaces normalized to the (D − 1)-dimensional
hypersphere SD−1, we haveWeisstein (2002); Wu et al. (2018) the following pairwise sampling
distribution q(•, •):

q (d (ϕ(xi), ϕ(xj))) ∝ d (ϕ(xi), ϕ(xj))
D−2

[
1− 1

4
d (ϕ(xi), ϕ(xj))

]D−3
2

for embedding pairs (ϕ(xi), ϕ(xj)) ∈ SD−1 and Euclidean distance d(•, •). For each xa ∈ B,
we randomly draw a positive example from {xp ∈ B : Y (xp) = Y (xa), xp ̸= xa}, and sample a
negative example based on an inverse distance distribution w.r.t. q:

P (xn|xa) ∝ min(λ, q−1(d(ϕ(xi), ϕ(xj))))

where λ ∈ R defines a clipping parameter to avoid potentially erroneous training samples.

Examined Objectives The primary goal of DML loss functions is to provide a training surrogate
that implicitly optimizes for desired metric space quantities by narrowing down the expected distance
between positive pairs of samples and expanding on the expected distance between negative pairs of
samples in the embedding space. Most commonly employed pair Hadsell et al. (2006) and tripled-
based Schroff et al. (2015); Hoffer & Ailon (2018) ranking losses penalize close negative pairs and
disparate positive pairs up to a predefined margin to avoid overclustering. Using P(x) to denote all
positive pairs containing x

P(x) = {(x1, x2) ∈ P : x1 = x}

and N(x) to denote all negative pairs containing x

N(x) = {(x1, x2) ∈ N : x1 = x}

we define

Definition 7 (Contrastive). Hadsell et al. (2006) Given a batch B, and pairs of samples S over
B × B, the contrastive objective is defined as:

Lcontr =
1

b

∑
(xi,xj)∈S

IY (xi)=Y (xj)d (ϕ(xi), ϕ(xj)) + IY (xi) ̸=Y (xj) [γ − d (ϕ(xi), ϕ(xj))]+

with margin γ.

Definition 8 (Triplet). Hoffer & Ailon (2018) The triplet loss extends the contrastive objective with
sample triplets and can be defined as:

Ltripl =
1

b

∑
(xa,xp,xn)∈T

Y (xa)=Y (xp) ̸=Y (xn)

[d (ϕ(xa), ϕ(xp))− d (ϕ(xa), ϕ(xn)) + γ]+

with margin γ.

Margin loss extends the triplet objective through the inclusion of a learnable boundary β between
positive and negative pairs Wu et al. (2018). In our experiments, we utilise β = 1.2. These criteria
are widely used (see e.g. Roth et al. (2020c); Musgrave et al. (2020)) and require mining to make use
of the batch information.

Definition 9 (Margin). Wu et al. (2018) The margin objective integrates the learnable distance
boundary β between positive and negative pairs of samples for a relative ordering of pairs with
respect to β as

Lmargin =
∑

(xi,xj)∈S

γ + IY (xi)=Y (xj) (d (ϕ(xi), ϕ(xj))− β)− IY (xi) ̸=Y (xj) (d (ϕ(xi), ϕ(xj))− β)

Going beyond pairs and triplets, one can also consider the case of more general n-tuples, which was
investigated e.g. in the N-Pair objective Sohn (2016) and the Multisimilarity loss Wang et al. (2020a).
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Definition 10 (N-Pair). Sohn (2016) N-Pair loss is a simple augmentation of the triplet framework
in which all negatives in the batch B are incorporated in the objective function as:

Lnpair =
1

b

∑
(xa,xp)∈B

Y (xa)=Y (xp),a ̸=p

log

1 +
∑
xn∈B

Y (xa )̸=Y (xn)

exp
(
ϕ(xa)

∗,Tϕ(xn)− ϕ(xa)
∗,Tϕ(xp)

∗)
+

ν

b
·
∑
i∈B

∥ϕ(xi)∗∥22 (6)

where ν denotes an embedding regularization parameter due to slow convergence for normalized
embeddings stated in Sohn (2016)

Definition 11 (Multisimilarity). Wang et al. (2020a) Multisimilarity loss fits into the ranking loss
category, but in addition to evaluation of cosine similarity between positive-anchor pairs and negative-
anchor pairs, the objective evaluates positive-positive and negative-negative pairs with respect to the
anchor:

s∗c(xi, xj) =

 sc (ϕ(xi), ϕ(xj)) sc (ϕ(xi), ϕ(xj)) > minxj∈P(xi) sc (ϕ(xi), ϕ(xj))− ϵ
sc (ϕ(xi), ϕ(xj)) sc (ϕ(xi), ϕ(xj)) < maxxk∈N(xi) sc (ϕ(xi), ϕ(xk)) + ϵ
0 otherwise

Lmultisim =
1

b

∑
xi∈B

1

α
log

1 + ∑
xj∈P(xi)

exp (−α (s∗c (ϕ(xi), ϕ(xj))− λ))

+

1

β
log

1 + ∑
k∈N(xi)

exp (β (s∗c (ϕ(xi), ϕ(xk))− λ))

 (7)

where cosine similarity sc(x, y) = xT y for two normalized vectors x, y ∈ X .

Notably, the Multisimilarity loss employs a masking process as a stand-in for the lack of batch-
mining heuristic. While this proves to be similarly successfull in addressing the tuple sampling
complexity issue, this can also be addressed through the usage of proxy-samples. These are dummy
variables that represent various contextual properties (such as mean class representations) to serve as
standing for actual samples, which is found e.g. in the ArcFace Deng et al. (2019) or ProxyNCA loss
Movshovitz-Attias et al. (2017).
Definition 12 (Proxy-NCA). Kim et al. (2020) ProxyNCA learns class proxies, or class centers,
which each represent a class in the set of unique classes Y . Then, each anchor from the batch is
sampled and a positive or negative proxy ψc ∈ Rd per class c ∈ Y is introduced in lieu of a positive
or negative sample, respectively, giving:

Lproxy = −1

b

∑
xi∈B

log

(
exp

(
−d
(
ϕ(xi), ψY (xi)

)∑
c∈Y\{Y (xi)} exp (−d (ϕ(xi), ψc)

)
Definition 13 (Arcface). Deng et al. (2019) Arcface combines proxy and angular loss methods (e.g.
in Wang et al. (2017)) to enforce an angular margin between the embeddings ϕ and a proxy (or
approximate center) W ∈ Rc×d for each class, giving the following:

Larc = −1

b

∑
xi∈B

log
exp

(
s · cos

(
WT

Y (xi)
ϕ(xi) + γ = 0.5

))
exp

(
s · cos

(
WT

Y (xi)
ϕ(xi) + γ = 0.5

))
+
∑

xj∈B
Y (xi) ̸=Y (xj)

exp
(
s · cos

(
WT

Y (xj)
ϕ(xi)

))
where the angular component is encoded in additive angular margin penalty γ, and s is a scaling
parameter, which denotes the radius of the effective utilized hypersphere S.

Standard Performance Metrics Performance metrics in deep metric learning aim to capture
the quality of the similarity metric learned by the deep embedding model. Therefore, standard
performance metrics in DML reflect the closeness between samples of the same class, the separability
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of samples of different classes, the clustering quality of embedding, and the uniformity over the
hypersphere embedding space, which has been linked to zero-shot generalization capability Wang
& Isola (2020), as discussed in Section 2. In our experiments, we utilize recall@1 Jegou et al.
(2011), normalized mutual information Manning et al. (2010) between cluster labels assigned by the
well-known K-Means Lloyd (1982) algorithm and ground-truth class labels, and UKL to measure
the closeness between samples of same class, cluster quality of the embedding (and hence, the
separability of distinct classes) and uniformity, respectively. Here, we define these metrics formally,
but we note that there exist multitudinous performance metrics for DML that we do not define here or
use explicitly for our results, including f1 score, mean average precision (mAP), and recall@k for
k > 1 Jegou et al. (2011).
Definition 14 (Recall@k). Jegou et al. (2011) Given k ∈ {1, . . . , |X|}, denote NNk as defined in
Definition 1. Then, Recall@k is measured as:

Recall@k =
1

|X|
∑
x∈X

{
1 ∃x̃ ∈ NNk(x) : Y (x̃) = Y (x)

0 else

Definition 15 (Normalized Mutual Information Score on Clusters). Manning et al. (2010) Let C a
clustering algorithm, such as K-Means Lloyd (1982) with the number of clusters set to |Y |, such
that C(x) indicates the cluster label for data point x ∈ X . The normalized mutual information score
between the target labels Y and the cluster labels C is measured as:

NMI =
2 · I(Y (X);C(X))

H(Y (X)) +H(C(X))

where for random variables X,Y , I(·, ·) denotes the mutual information function:

I(X;Y ) = H(Y )−H(Y |X)

and H(·) denotes the entropy function:

H(X) = −
∑
x∈X

Pr(x) log(Pr(x))

The performance metric UKL, used to measure feature uniformity for our empirical evaluations, is
defined in Section 3.1.

A.2 CLASSIFICATION FAIRNESS DEFINITIONS

Fairness definitions and criteria in classification are briefly mentioned in Section 2 of the main paper.
Here, we provide explicit formulas for the most common fairness definitions, including demographic
parity, equalized odds, and equality of opportunity Hardt et al. (2016), and provide some additional
context on fairness definition evolution.
Definition 16 (Demographic Parity). The predictor Ŷ satisfies demographic parity with respect to
attribute A and class Y if the predictor is independent of A:

Pr[Ŷ = 1|A = a] = Pr[Ŷ = 1|A = b] ∀a, b ∈ A

Specifically, demographic parity has largely been used over the years as a simple and intuitive
definition of fairness, in which a classifier is said to satisfy demographic parity if the sensitive
attribute is independent of the output of the classifier. While demographic parity provides a simple
fairness definition, the measure cannot capture fairness in classification tasks where the ground-truth
label is inherently related to a certain attribute value Li et al. (2017).

Definition 17 (Equalized Odds). The predictor Ŷ satisfies demographic parity with respect to
attribute A and class Y if the predictor is independent of A conditional on Y :

Pr[Ŷ = 1|A = a, Y = y] = Pr[Ŷ = 1|A = b, Y = y] ∀a, b ∈ A,∀y ∈ {0, 1}
from Hardt et al. (2016).

Definition 18 (Equality of Opportunity). The predictor Ŷ satisfies demographic parity with respect
to attribute A and class Y if the predictor is independent of A conditional on positively labelled Y :

Pr[Ŷ = 1|A = a, Y = 1] = Pr[Ŷ = 1|A = b, Y = 1] ∀a, b ∈ A

from Hardt et al. (2016).
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This lead to the introduction of other fairness definitions that capture such nuances, the most well-
known of which are probably equalized odds and equality of opportunity Hardt et al. (2016). However,
fairness metrics overall have been criticized due to the choice of protected attribute over which to
measure, and the inability of these metrics to capture bias with respect to certain attributes which are
not known at test-time. We discuss this to a limited extent in Section 7.

B DATASET SUMMARY STATISTICS

Figure 4: Class distribution in CARS196. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CARS196.

Figure 5: Class distribution in CUB200. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CUB200.

Black Blue Brown Buff Green Grey Iridescent Olive Orange Red White Yellow
Train 21.20 5.58 18.08 3.01 0.37 19.20 0.51 0.49 1.02 3.52 13.35 13.65
Test 21.17 5.56 18.11 3.04 0.39 19.21 0.51 0.51 1.01 3.52 13.29 13.68

Table 3: Summary statistics for CUB200 bird color The percentage of the dataset constituted by each
bird color in CUB200, in the train dataset and test dataset, respectively.

C ADDITIONAL RESULTS

C.1 CARS196

Additional results for all loss and batch mining strategies for the manually class imbalanced ex-
periments and balanced controls for CARS196 are located in Tables 6 and 7. K-Means was also
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Figure 6: Class distribution in CelebA. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CelebA.

I II III IV V VI

Train 1.10 32.04 47.92 15.12 3.20 0.61
Test 1.24 32.09 48.09 14.81 3.22 0.55

Table 4: Summary statistics for CelebA Fitzpatrick Skintone. The percentage of the dataset constituted
by each Fitzpatrick Skintone in CelebA, in the train dataset and test dataset, respectively.

Figure 7: Class distribution in LFW. Histograms visualizing the distribution over logarithm of number
of samples per class in the train (left) and test (right) datasets in LFW.

Asian Black Indian White
Train 8.43 4.17 1.71 85.70
Test 6.27 4.61 1.79 87.33

Table 5: Summary statistics for LFW Race The percentage of the dataset constituted by each Race in
LFW, in the train dataset and test dataset, respectively.

tested as a downstream classifier but showed poor performance. The impact of varying imbalance
in the manually class imbalanced CARS196 experiments with all tested downstream classifiers is
displayed in Table 8. Additional results for benchmarking of further fairness improvement methods
in downstream classification of "imbalanced" embeddings (aside from naive use of balanced datasets)
are shown in Table 8.
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Overall
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.861± 0.003 0.83± 0.005 0.854± 0.002 0.819± 0.008 0.83± 0.002 0.811± 0.006
NMI 0.909± 0.003 0.879± 0.003 0.894± 0.003 0.867± 0.005 0.876± 0.004 0.861± 0.007
UKL 0.433± 0.004 0.457± 0.008 0.096± 0.002 0.091± 0.002 0.133± 0.004 0.133± 0.003

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.878± 0.002 0.848± 0.006 0.88± 0.002 0.861± 0.004 0.858± 0.005 0.853± 0.005
Precision 0.877± 0.002 0.848± 0.007 0.883± 0.002 0.864± 0.004 0.86± 0.005 0.856± 0.005

Recall 0.876± 0.002 0.846± 0.006 0.879± 0.002 0.86± 0.004 0.856± 0.005 0.852± 0.005

RF
Accuracy 0.855± 0.002 0.832± 0.006 0.816± 0.003 0.758± 0.011 0.819± 0.005 0.79± 0.006
Precision 0.859± 0.003 0.835± 0.006 0.82± 0.003 0.763± 0.01 0.822± 0.005 0.794± 0.006

Recall 0.855± 0.003 0.831± 0.006 0.815± 0.003 0.757± 0.011 0.817± 0.005 0.788± 0.005

SVM
Accuracy 0.876± 0.002 0.852± 0.006 0.882± 0.002 0.863± 0.004 0.863± 0.005 0.86± 0.004
Precision 0.875± 0.002 0.855± 0.007 0.888± 0.002 0.875± 0.003 0.867± 0.005 0.867± 0.004

Recall 0.874± 0.002 0.85± 0.006 0.881± 0.002 0.863± 0.004 0.863± 0.005 0.86± 0.004

Overall
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.858± 0.002 0.839± 0.005 0.887± 0.001 0.858± 0.005 0.866± 0.003 0.848± 0.006 0.794± 0.003 0.778± 0.006
NMI 0.898± 0.003 0.881± 0.004 0.915± 0.003 0.89± 0.005 0.903± 0.001 0.884± 0.005 0.849± 0.001 0.834± 0.007
UKL 0.151± 0.002 0.155± 0.003 0.083± 0.001 0.094± 0.003 0.304± 0.003 0.293± 0.003 0.397± 0.009 0.382± 0.007

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.886± 0.001 0.875± 0.005 0.898± 0.003 0.877± 0.005 0.885± 0.002 0.872± 0.004 0.828± 0.004 0.818± 0.005
Precision 0.889± 0.001 0.878± 0.004 0.901± 0.002 0.879± 0.005 0.888± 0.002 0.874± 0.003 0.829± 0.003 0.821± 0.005

Recall 0.885± 0.001 0.873± 0.005 0.898± 0.003 0.876± 0.005 0.883± 0.002 0.87± 0.004 0.825± 0.003 0.816± 0.005

RF
Accuracy 0.825± 0.004 0.794± 0.005 0.852± 0.003 0.823± 0.007 0.858± 0.003 0.836± 0.004 0.808± 0.004 0.792± 0.008
Precision 0.831± 0.004 0.797± 0.006 0.857± 0.003 0.825± 0.008 0.861± 0.003 0.838± 0.004 0.811± 0.004 0.795± 0.008

Recall 0.824± 0.004 0.793± 0.005 0.852± 0.003 0.823± 0.008 0.857± 0.003 0.835± 0.004 0.807± 0.004 0.791± 0.008

SVM
Accuracy 0.888± 0.001 0.876± 0.004 0.894± 0.002 0.871± 0.003 0.887± 0.002 0.878± 0.004 0.835± 0.003 0.83± 0.005
Precision 0.893± 0.001 0.886± 0.004 0.902± 0.001 0.887± 0.003 0.892± 0.002 0.884± 0.004 0.839± 0.003 0.834± 0.005

Recall 0.887± 0.001 0.876± 0.004 0.894± 0.002 0.871± 0.003 0.886± 0.003 0.877± 0.003 0.834± 0.003 0.829± 0.005

Table 6: Overall results on CARS196. Metrics over entire test dataset in representation space and
downstream classification (LR, RF, and SVM) over 10 seed in manually class imbalanced experiments
(Imbalanced) and control experiments (Balanced) for CARS196.

Subgroup Gap
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.861± 0.003 0.83± 0.005 0.854± 0.002 0.819± 0.008 0.83± 0.002
NMI −0.013± 0.004 0.106± 0.013 −0.016± 0.005 0.124± 0.014 −0.018± 0.006 0.11± 0.016
UKL −0.093± 0.004 0.011± 0.011 −0.033± 0.002 0.01± 0.003 −0.038± 0.006 0.012± 0.005

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.002± 0.003 0.147± 0.023 0.003± 0.003 0.12± 0.013 0.004± 0.007 0.115± 0.018
Precision 0.336± 0.004 0.407± 0.013 0.355± 0.008 0.402± 0.013 0.353± 0.008 0.403± 0.013

Recall 0.351± 0.004 0.439± 0.016 0.368± 0.008 0.426± 0.015 0.367± 0.008 0.431± 0.014

RF
Accuracy 0.001± 0.006 0.115± 0.021 0.002± 0.004 0.315± 0.022 0.002± 0.008 0.231± 0.024
Precision 0.358± 0.005 0.396± 0.013 0.374± 0.006 0.441± 0.013 0.362± 0.007 0.429± 0.014

Recall 0.373± 0.005 0.409± 0.015 0.387± 0.006 0.502± 0.013 0.376± 0.008 0.481± 0.016

SVM
Accuracy 0.003± 0.004 0.086± 0.022 0.002± 0.003 0.039± 0.013 0.002± 0.006 0.055± 0.018
Precision 0.33± 0.006 0.332± 0.023 0.35± 0.008 0.283± 0.024 0.347± 0.011 0.328± 0.018

Recall 0.347± 0.004 0.338± 0.027 0.363± 0.008 0.27± 0.027 0.361± 0.011 0.327± 0.018

Subgroup Gap
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.858± 0.002 0.839± 0.005 0.887± 0.001 0.858± 0.005 0.866± 0.003 0.848± 0.006 0.794± 0.003 0.778± 0.006
NMI −0.014± 0.004 0.116± 0.014 −0.011± 0.004 0.148± 0.014 −0.013± 0.001 0.109± 0.016 −0.018± 0.002 0.083± 0.015
UKL −0.03± 0.003 0.005± 0.004 −0.129± 0.002 0.005± 0.005 −0.047± 0.005 0.011± 0.006 −0.034± 0.013 0.023± 0.011

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.002± 0.002 0.117± 0.018 0.003± 0.005 0.155± 0.019 0.001± 0.004 0.131± 0.017 0.004± 0.005 0.12± 0.016
Precision 0.352± 0.006 0.396± 0.014 0.334± 0.006 0.438± 0.012 0.343± 0.005 0.404± 0.011 0.357± 0.004 0.392± 0.009

Recall 0.365± 0.006 0.418± 0.018 0.347± 0.006 0.46± 0.016 0.356± 0.005 0.431± 0.013 0.371± 0.004 0.421± 0.01

RF
Accuracy 0.0± 0.006 0.26± 0.023 0.0± 0.005 0.221± 0.022 0.0± 0.004 0.168± 0.015 0.003± 0.005 0.141± 0.02
Precision 0.378± 0.005 0.441± 0.011 0.379± 0.005 0.458± 0.01 0.361± 0.006 0.425± 0.008 0.361± 0.004 0.393± 0.012

Recall 0.389± 0.005 0.485± 0.009 0.39± 0.005 0.476± 0.011 0.375± 0.006 0.45± 0.009 0.374± 0.004 0.426± 0.012

SVM
Accuracy 0.002± 0.002 0.047± 0.015 0.0± 0.003 0.076± 0.013 0.0± 0.004 0.063± 0.018 0.002± 0.005 0.073± 0.02
Precision 0.349± 0.006 0.267± 0.03 0.335± 0.006 0.29± 0.026 0.339± 0.007 0.297± 0.03 0.354± 0.007 0.364± 0.015

Recall 0.362± 0.005 0.258± 0.032 0.349± 0.006 0.273± 0.029 0.353± 0.007 0.295± 0.03 0.368± 0.006 0.372± 0.016

Table 7: Gap study on CARS196. Average gaps in representation space and downstream classification
(LR, RF, and SVM) over 10 seeds between minoritized and majoritized classes in manually class
imbalanced experiments (Imbalanced) and control experiments (Balanced) for CARS196.

C.2 CUB200

Additional results for all loss and batch mining strategies for the manually class imbalanced experi-
ments and balanced controls for CUB200 are located in Tables 9 and 10. K-Means was also tested as
a downstream classifier but showed poor performance. The impact of varying imbalance in the manu-
ally class imbalanced experiments in the upstream embedding, and all tested downstream classifiers
is displayed in Table 9. Additional results for benchmarking of further fairness improvement methods
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Table 8: Benchmarking additional fairness improvement methods in downstream classification on
CARS196 (Classes). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CARS196 in class imbalanced experiments with upstream
embedding trained on imbalanced dataset.

(a) Domain-Independent Training

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.812 ± 0.011 0.834 ± 0.009 0.820 ± 0.008 0.842 ± 0.008 0.869 ± 0.005 0.836 ± 0.007 0.742 ± 0.007
PRECISION 0.834 ± 0.009 0.861 ± 0.004 0.847 ± 0.004 0.872 ± 0.004 0.878 ± 0.005 0.865 ± 0.009 0.804 ± 0.008
RECALL 0.811 ± 0.011 0.833 ± 0.009 0.818 ± 0.008 0.840 ± 0.008 0.869 ± 0.005 0.834 ± 0.008 0.740 ± 0.008

Gap
ACCURACY 0.001 ± 0.027 0.010 ± 0.018 0.017 ± 0.021 0.018 ± 0.018 0.120 ± 0.018 0.022 ± 0.017 0.094 ± 0.021
PRECISION 0.304 ± 0.021 0.275 ± 0.021 0.313 ± 0.019 0.247 ± 0.027 0.398 ± 0.015 0.236 ± 0.022 0.289 ± 0.016
RECALL 0.260 ± 0.024 0.218 ± 0.022 0.258 ± 0.018 0.182 ± 0.027 0.398 ± 0.018 0.175 ± 0.022 0.177 ± 0.016

(b) Oversampling

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.851 ± 0.007 0.862 ± 0.004 0.853 ± 0.006 0.875 ± 0.004 0.878 ± 0.004 0.875 ± 0.005 0.820 ± 0.005
PRECISION 0.854 ± 0.006 0.864 ± 0.004 0.855 ± 0.006 0.877 ± 0.004 0.880 ± 0.005 0.876 ± 0.004 0.822 ± 0.005
RECALL 0.853 ± 0.006 0.862 ± 0.004 0.853 ± 0.006 0.875 ± 0.004 0.878 ± 0.004 0.875 ± 0.004 0.821 ± 0.005

Gap
ACCURACY 0.128 ± 0.023 0.099 ± 0.014 0.102 ± 0.020 0.097 ± 0.019 0.136 ± 0.017 0.108 ± 0.018 0.109 ± 0.019
PRECISION 0.398 ± 0.012 0.386 ± 0.017 0.391 ± 0.014 0.383 ± 0.015 0.422 ± 0.014 0.387 ± 0.013 0.387 ± 0.011
RECALL 0.423 ± 0.015 0.403 ± 0.017 0.414 ± 0.014 0.396 ± 0.019 0.436 ± 0.017 0.406 ± 0.015 0.413 ± 0.012
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Figure 8: Impact of varying imbalance between the minoritized and majoritized classes on various
downstream classifiers (RF, LR and SVM) in the manually class imbalanced CARS196 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase for all
classifiers downstream with more imbalance introduced to the upstream training data.

in downstream classification of "imbalanced" embeddings (aside from naive use of balanced datasets)
are shown in Table 11. Benchmarking of fairness improvement methods in downstream classification
for bird color are shown in Table 12. Per-subgroup and overall results for CUB200 color experiments
with standard margin-distance and PARADE are displayed in Table 13.

C.3 CELEBA

Additional results for all loss and batch mining strategies for the CelebA dataset are located in
Tables 14 and 15. Additional PARADE results for subgroup gaps excluding Fitzpatrick Skintone VI
(as mentioned in Section 6.3) are located in Table 16.
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Overall
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.79± 0.002 0.782± 0.005 0.786± 0.003 0.78± 0.005 0.775± 0.006 0.766± 0.006
NMI 0.872± 0.002 0.859± 0.003 0.861± 0.003 0.856± 0.004 0.856± 0.003 0.85± 0.005
UKL 0.397± 0.003 0.449± 0.007 0.076± 0.001 0.076± 0.001 0.113± 0.003 0.113± 0.002

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.815± 0.002 0.81± 0.005 0.815± 0.002 0.827± 0.006 0.809± 0.004 0.818± 0.005
Precision 0.817± 0.002 0.811± 0.005 0.822± 0.001 0.831± 0.006 0.815± 0.004 0.822± 0.005

Recall 0.815± 0.002 0.81± 0.005 0.816± 0.002 0.827± 0.006 0.81± 0.004 0.818± 0.005

RF
Accuracy 0.776± 0.002 0.787± 0.007 0.757± 0.003 0.735± 0.009 0.768± 0.002 0.758± 0.004
Precision 0.785± 0.003 0.793± 0.006 0.762± 0.003 0.737± 0.01 0.774± 0.002 0.762± 0.004

Recall 0.776± 0.002 0.787± 0.007 0.757± 0.003 0.735± 0.009 0.769± 0.002 0.758± 0.004

SVM
Accuracy 0.813± 0.002 0.811± 0.007 0.81± 0.002 0.82± 0.007 0.808± 0.004 0.815± 0.004
Precision 0.823± 0.003 0.821± 0.007 0.827± 0.002 0.843± 0.005 0.818± 0.003 0.829± 0.004

Recall 0.813± 0.002 0.811± 0.007 0.811± 0.002 0.82± 0.006 0.808± 0.003 0.815± 0.004

Overall
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.779± 0.006 0.788± 0.005 0.807± 0.004 0.8± 0.007 0.792± 0.003 0.795± 0.007 0.761± 0.004
NMI 0.857± 0.003 0.857± 0.004 0.873± 0.003 0.86± 0.005 0.866± 0.002 0.861± 0.005 0.848± 0.005 0.843± 0.004
UKL 0.139± 0.001 0.146± 0.002 0.056± 0.001 0.073± 0.001 0.274± 0.005 0.277± 0.005 0.336± 0.004 0.321± 0.007

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.813± 0.004 0.833± 0.004 0.824± 0.003 0.828± 0.005 0.82± 0.001 0.828± 0.005 0.802± 0.003 0.806± 0.004
Precision 0.82± 0.004 0.836± 0.004 0.828± 0.003 0.833± 0.005 0.826± 0.001 0.833± 0.006 0.808± 0.003 0.811± 0.004

Recall 0.814± 0.004 0.833± 0.004 0.824± 0.003 0.828± 0.005 0.82± 0.001 0.828± 0.005 0.803± 0.003 0.806± 0.005

RF
Accuracy 0.754± 0.003 0.754± 0.005 0.761± 0.006 0.768± 0.007 0.786± 0.004 0.789± 0.008 0.776± 0.003 0.774± 0.007
Precision 0.76± 0.004 0.755± 0.005 0.768± 0.007 0.774± 0.006 0.794± 0.004 0.792± 0.009 0.782± 0.003 0.778± 0.006

Recall 0.754± 0.003 0.755± 0.005 0.762± 0.006 0.768± 0.007 0.786± 0.004 0.789± 0.008 0.777± 0.003 0.774± 0.007

SVM
Accuracy 0.812± 0.002 0.828± 0.006 0.818± 0.002 0.816± 0.005 0.819± 0.002 0.83± 0.005 0.798± 0.001 0.808± 0.005
Precision 0.825± 0.003 0.848± 0.005 0.834± 0.002 0.852± 0.004 0.829± 0.003 0.845± 0.004 0.806± 0.002 0.816± 0.005

Recall 0.812± 0.002 0.828± 0.006 0.819± 0.002 0.817± 0.005 0.819± 0.002 0.831± 0.005 0.798± 0.001 0.808± 0.005

Table 9: Overall results on CUB200. Metrics over entire test dataset in representation space and
downstream classification (LR, RF, and SVM) over 10 seed in manually class imbalanced experiments
(Imbalanced) and control experiments (Balanced) for CUB200.

Subgroup Gap
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.011± 0.004 0.168± 0.028 0.008± 0.005 0.212± 0.029 0.01± 0.008 0.187± 0.031
NMI −0.009± 0.002 0.109± 0.015 −0.008± 0.005 0.112± 0.012 −0.009± 0.003 0.092± 0.017
UKL −0.112± 0.004 0.004± 0.011 −0.043± 0.002 0.0± 0.002 −0.05± 0.004 0.002± 0.004

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.014± 0.004 0.181± 0.029 0.008± 0.003 0.131± 0.027 0.009± 0.006 0.131± 0.031
Precision 0.333± 0.003 0.417± 0.012 0.337± 0.005 0.39± 0.014 0.331± 0.006 0.393± 0.015

Recall 0.354± 0.004 0.462± 0.016 0.356± 0.005 0.424± 0.018 0.351± 0.007 0.43± 0.016

RF
Accuracy 0.013± 0.004 0.121± 0.026 0.009± 0.005 0.325± 0.035 0.01± 0.006 0.255± 0.031
Precision 0.339± 0.007 0.386± 0.014 0.347± 0.006 0.428± 0.011 0.342± 0.007 0.418± 0.014

Recall 0.359± 0.006 0.391± 0.015 0.365± 0.006 0.495± 0.01 0.362± 0.007 0.478± 0.014

SVM
Accuracy 0.014± 0.003 0.106± 0.032 0.009± 0.004 0.043± 0.028 0.009± 0.006 0.058± 0.029
Precision 0.326± 0.008 0.36± 0.021 0.332± 0.008 0.301± 0.023 0.329± 0.006 0.329± 0.017

Recall 0.345± 0.007 0.362± 0.024 0.348± 0.008 0.278± 0.027 0.348± 0.006 0.323± 0.02

Subgroup Gap
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.008± 0.009 0.187± 0.031 0.01± 0.005 0.256± 0.03 0.009± 0.004 0.159± 0.031 0.009± 0.006 0.168± 0.036
NMI −0.008± 0.004 0.113± 0.016 −0.009± 0.004 0.142± 0.015 −0.007± 0.003 0.103± 0.016 −0.01± 0.006 0.082± 0.016
UKL −0.036± 0.002 −0.003± 0.003 −0.131± 0.003 −0.012± 0.005 −0.057± 0.006 −0.004± 0.009 −0.051± 0.005 0.014± 0.011

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.009± 0.006 0.141± 0.032 0.007± 0.005 0.169± 0.027 0.011± 0.002 0.179± 0.031 0.011± 0.005 0.134± 0.031
Precision 0.337± 0.008 0.391± 0.016 0.337± 0.005 0.428± 0.018 0.335± 0.005 0.41± 0.014 0.336± 0.006 0.384± 0.014

Recall 0.356± 0.008 0.427± 0.019 0.356± 0.006 0.455± 0.019 0.355± 0.004 0.459± 0.016 0.357± 0.006 0.426± 0.016

RF
Accuracy 0.009± 0.006 0.282± 0.034 0.009± 0.009 0.214± 0.026 0.01± 0.005 0.192± 0.035 0.011± 0.004 0.175± 0.03
Precision 0.348± 0.006 0.428± 0.011 0.355± 0.01 0.436± 0.009 0.347± 0.006 0.409± 0.014 0.341± 0.007 0.393± 0.013

Recall 0.365± 0.005 0.48± 0.012 0.372± 0.01 0.443± 0.01 0.364± 0.007 0.44± 0.014 0.36± 0.006 0.437± 0.015

SVM
Accuracy 0.009± 0.003 0.048± 0.027 0.009± 0.003 0.063± 0.026 0.011± 0.003 0.071± 0.027 0.012± 0.002 0.082± 0.03
Precision 0.335± 0.005 0.307± 0.02 0.33± 0.006 0.347± 0.022 0.334± 0.006 0.324± 0.014 0.334± 0.005 0.34± 0.012

Recall 0.352± 0.004 0.284± 0.023 0.347± 0.004 0.299± 0.022 0.353± 0.006 0.315± 0.017 0.355± 0.005 0.356± 0.014

Table 10: Gap study on CUB200. Average gaps in representation space and downstream classification
(LR, RF, and SVM) over 10 seeds between minoritized and majoritized classes in manually class
imbalanced experiments (Imbalanced) and control experiments (Balanced) for CUB200.

C.4 LFW

Additional results for all loss and batch mining strategies for the LFW dataset are located in Tables 18
and 19. Per-subgroup results for LFW to demonstrate worst-group performance for the “White" sub-
group (as mentioned in Section 6.3) are located in Table 20. Benchmarking of fairness improvement
methods in downstream classification for bird color are shown in Table 21.
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Table 11: Benchmarking additional fairness improvement methods in downstream classification on
CUB200 (Classes). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CUB200-2011 in class imbalanced experiments with upstream
embedding trained on imbalanced dataset.

(a) Domain-Independent Training

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.782 ± 0.008 0.809 ± 0.004 0.794 ± 0.005 0.805 ± 0.004 0.823 ± 0.006 0.798 ± 0.005 0.749 ± 0.006
PRECISION 0.805 ± 0.011 0.840 ± 0.006 0.827 ± 0.005 0.847 ± 0.005 0.836 ± 0.006 0.842 ± 0.005 0.806 ± 0.006
RECALL 0.782 ± 0.008 0.809 ± 0.004 0.795 ± 0.005 0.805 ± 0.004 0.823 ± 0.006 0.798 ± 0.004 0.749 ± 0.005

Gap
ACCURACY 0.034 ± 0.033 0.003 ± 0.030 0.014 ± 0.031 0.024 ± 0.031 0.140 ± 0.030 0.024 ± 0.030 0.077 ± 0.031
PRECISION 0.340 ± 0.024 0.304 ± 0.031 0.301 ± 0.022 0.264 ± 0.028 0.410 ± 0.022 0.262 ± 0.032 0.270 ± 0.018
RECALL 0.308 ± 0.027 0.253 ± 0.035 0.249 ± 0.025 0.189 ± 0.031 0.415 ± 0.024 0.188 ± 0.036 0.177 ± 0.021

(b) Oversampling

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.811 ± 0.005 0.828 ± 0.005 0.818 ± 0.004 0.832 ± 0.005 0.828 ± 0.005 0.829 ± 0.006 0.806 ± 0.005
PRECISION 0.814 ± 0.005 0.831 ± 0.005 0.822 ± 0.004 0.835 ± 0.005 0.833 ± 0.005 0.832 ± 0.006 0.811 ± 0.004
RECALL 0.812 ± 0.005 0.828 ± 0.005 0.819 ± 0.004 0.833 ± 0.005 0.828 ± 0.005 0.829 ± 0.006 0.807 ± 0.005

Gap
ACCURACY 0.182 ± 0.027 0.131 ± 0.028 0.129 ± 0.030 0.142 ± 0.035 0.170 ± 0.026 0.177 ± 0.032 0.135 ± 0.032
PRECISION 0.421 ± 0.011 0.386 ± 0.015 0.391 ± 0.016 0.391 ± 0.016 0.428 ± 0.016 0.409 ± 0.015 0.385 ± 0.013
RECALL 0.464 ± 0.015 0.420 ± 0.018 0.428 ± 0.018 0.426 ± 0.020 0.455 ± 0.017 0.457 ± 0.017 0.427 ± 0.015

Table 12: Benchmarking additional fairness improvement methods in downstream classification on
CUB200 (Color). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CUB200-2011 in bird color experiments.

(a) Domain-Independent Training

METRIC ↓ Margin (D)

Overall
ACCURACY 0.490 ± 0.005
PRECISION 0.896 ± 0.003
RECALL 0.489 ± 0.006

Gap
ACCURACY 0.426 ± 0.017
PRECISION 0.185 ± 0.108
RECALL 0.353 ± 0.108

(b) Oversampling

METRIC ↓ Margin (D)

Overall
ACCURACY 0.802 ± 0.002
PRECISION 0.816 ± 0.002
RECALL 0.802 ± 0.002

Gap
ACCURACY 0.143 ± 0.019
PRECISION 0.323 ± 0.063
RECALL 0.348 ± 0.064

C.5 EXPLORATION OF FAIRNESS - UTILITY TRADEOFF AND VARYING HYPERPARAMETERS IN
PARADE

We vary αSA and ρ in the PARADE objective to explore the relationship between the overall
performance, subgroup gap, and worst-group performance in PARADE. As stated in the main
paper, we optimize αSA and ρ via worst-group performance. Results of this analysis are displayed in
Figure 12. We use our exploration to expound on how to optimize for αSA and ρ. As seen in Figure 12,
a clear trend that inversely relates overall performance, and fairness as measured by subgroup gap and
worst-group performance is seen for the uniformity metric, UKL over the grid of αSA and ρ values
(Note that higher values of UKL correspond to worse performance). Recall@1 and NMI demonstrate
noisier relationships between overall performance and fairness; and several αSA, ρ choices appear to
select an optimal tradeoff. In Figure 12, for Recall@1, we observe that at the location αSA = 0.1,
ρ = 500. in the optimization grid, PARADE reaches peak overall performance and fairness (measured
by low subgroup gap and high performance for the worst-performing subgroup) simultaneously. Thus,
we could conclude that this choice of αSA and ρ represents an optimal tradeoff for utility and fairness
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Color overall overall black black blue blue brown brown

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.785± 0.003 0.786± 0.003 0.780± 0.006 0.777± 0.005 0.837± 0.016 0.841± 0.010 0.773± 0.005 0.779± 0.008
NMI 0.860± 0.001 0.861± 0.003 0.832± 0.005 0.837± 0.004 0.840± 0.025 0.863± 0.026 0.831± 0.013 0.838± 0.007
UKL 0.071± 0.002 0.076± 0.001 0.164± 0.002 0.153± 0.003 0.296± 0.004 0.275± 0.007 0.156± 0.004 0.148± 0.003

Precision 0.819± 0.003 0.822± 0.001 0.403± 0.007 0.412± 0.016 0.399± 0.053 0.401± 0.022 0.396± 0.005 0.390± 0.016
Recall 0.812± 0.003 0.816± 0.002 0.375± 0.007 0.384± 0.014 0.367± 0.052 0.366± 0.022 0.357± 0.008 0.351± 0.016

Accuracy 0.812± 0.003 0.815± 0.002 0.790± 0.009 0.798± 0.004 0.867± 0.009 0.877± 0.011 0.804± 0.001 0.812± 0.006

Color buff buff green green grey grey iridescent iridescent olive

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade

Recall@1 0.787± 0.008 0.792± 0.006 1.000± 0.000 1.000± 0.000 0.751± 0.015 0.754± 0.010 1.000± 0.000 1.000± 0.000 0.589± 0.038
NMI 0.789± 0.005 0.808± 0.015 −0.000± 0.000 −0.000± 0.000 0.853± 0.009 0.849± 0.004 1.000± 0.000 0.800± 0.447 −0.000± 0.000
UKL 0.349± 0.003 0.343± 0.004 0.262± 0.024 0.252± 0.021 0.142± 0.005 0.137± 0.002 0.369± 0.013 0.318± 0.017 0.164± 0.008

Precision 0.250± 0.006 0.253± 0.013 1.000± 0.000 1.000± 0.000 0.337± 0.014 0.338± 0.022 1.000± 0.000 1.000± 0.000 0.289± 0.077
Recall 0.209± 0.005 0.212± 0.012 1.000± 0.000 1.000± 0.000 0.292± 0.013 0.297± 0.021 1.000± 0.000 1.000± 0.000 0.173± 0.048

Accuracy 0.824± 0.003 0.824± 0.011 1.000± 0.000 1.000± 0.000 0.790± 0.007 0.796± 0.006 1.000± 0.000 1.000± 0.000 0.600± 0.033

Color olive orange orange red red white white yellow yellow

Method Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.620± 0.087 0.839± 0.010 0.863± 0.040 0.917± 0.018 0.919± 0.017 0.729± 0.012 0.706± 0.011 0.846± 0.003 0.862± 0.012
NMI 0.000± 0.000 0.701± 0.060 0.657± 0.036 0.839± 0.032 0.830± 0.033 0.792± 0.008 0.787± 0.010 0.842± 0.011 0.864± 0.005
UKL 0.151± 0.005 0.295± 0.004 0.277± 0.009 0.445± 0.003 0.411± 0.011 0.176± 0.003 0.166± 0.003 0.215± 0.005 0.202± 0.004

Precision 0.240± 0.063 0.302± 0.027 0.303± 0.079 0.555± 0.052 0.559± 0.048 0.387± 0.018 0.380± 0.012 0.503± 0.012 0.530± 0.022
Recall 0.160± 0.049 0.261± 0.024 0.263± 0.076 0.542± 0.053 0.544± 0.049 0.357± 0.018 0.342± 0.011 0.481± 0.011 0.509± 0.022

Accuracy 0.660± 0.060 0.867± 0.017 0.860± 0.028 0.923± 0.017 0.927± 0.009 0.752± 0.004 0.737± 0.002 0.879± 0.001 0.884± 0.008

Table 13: Absolute performance for all CUB200 subgroups. Metrics over each bird color subgroup in
the CUB200 test dataset respectively, in representation space and downstream classification (logistic
regressor) over 3 seeds for standard methods and PARADE in CUB200.
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Figure 9: Impact of varying imbalance between the minoritized and majoritized classes on various
downstream classifiers (RF, LR and SVM) in the manually class imbalanced CUB200 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase for all
classifiers downstream with more imbalance introduced to the upstream training data.

Overall
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.897± 0.002 0.888± 0.002 0.885± 0.002 0.922± 0.001 0.11± 0.002
NMI 0.91± 0.0 0.902± 0.001 0.901± 0.003 0.929± 0.0 0.61± 0.0
UKL 0.019± 0.001 0.017± 0.0 0.336± 0.013 0.237± 0.006 2.595± 0.055

DOWNSTREAM
CLASSIFICATION LR

Accuracy 0.891± 0.0 0.89± 0.001 0.692± 0.004 0.831± 0.002 0.017± 0.0
Precision 0.721± 0.0 0.721± 0.001 0.55± 0.003 0.652± 0.003 0.004± 0.0

Recall 0.74± 0.0 0.741± 0.001 0.546± 0.003 0.674± 0.003 0.011± 0.0

Table 14: Overall results on CelebA. Metrics over entire test dataset in representation space and
downstream classification (logistic regressor) over 3 seeds for standard methods and PARADE in
CelebA.

in PARADE as measured by Recall@1. By the other displayed metrics, we see that αSA = 0.1,
ρ = 500. demonstrates a reasonable utility-fairness tradeoff. Therefore, the choice of αSA = 0.1,
ρ = 500. would be optimal for PARADE in CUB200 bird color setting. Note that the choice of
where to operate within this trade-off should depend on the application that is being targeted. For
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Subgroup Gap
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.135± 0.008 0.128± 0.003 0.085± 0.009 0.122± 0.005 −0.023± 0.013
NMI −0.003± 0.004 −0.01± 0.002 −0.012± 0.003 −0.002± 0.003 −0.102± 0.002
UKL −0.054± 0.003 −0.052± 0.003 −0.04± 0.011 −0.03± 0.007 −0.015± 0.038

DOWNSTREAM
CLASSIFICATION LR

Accuracy 0.068± 0.002 0.069± 0.002 0.131± 0.006 0.082± 0.005 0.006± 0.002
Precision 0.087± 0.003 0.087± 0.004 0.146± 0.006 0.1± 0.007 0.001± 0.001

Recall 0.084± 0.002 0.083± 0.003 0.141± 0.007 0.098± 0.007 0.002± 0.001

Table 15: Gap study on CelebA. Average gaps in representation space and downstream classification
(logistic regressor) over 3 seeds between minoritized and majoritized classes (Fitzpatrick Skintone)
for standard methods and PARADE in CelebA.

Margin · Distance
PARADE Standard

UPSTREAM
EMBEDDING

Recall@1 −0.035± 0.006 0.005± 0.004
NMI −0.004± 0.003 0.004± 0.002
UKL 0.04± 0.011 0.084± 0.006

DOWNSTREAM
CLASSIFICATION (LR)

Precision 0.021± 0.006 0.039± 0.002
Recall 0.018± 0.006 0.029± 0.002

Accuracy 0.011± 0.005 0.018± 0.002

Table 16: Gap study on CelebA excluding Fitzpatrick Skintone VI. Average gaps in representation
space and downstream classification (logistic regressor) over 3 seeds between minoritized and
majoritized classes (Fitzpatrick Skintone) where the darkest skintone (VI) is excluded for standard
methods and PARADE in CelebA.

Skintones Overall Overall Skintone 1 Skintone 1 Skintone 2 Skintone 2 Skintone 3

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade

Recall@1 0.885± 0.002 0.922± 0.001 0.738± 0.005 0.858± 0.011 0.887± 0.004 0.930± 0.001 0.907± 0.001
NMI@1 0.901± 0.003 0.929± 0.000 0.933± 0.007 0.961± 0.000 0.923± 0.004 0.947± 0.001 0.927± 0.002
UKL 0.336± 0.013 0.237± 0.006 0.436± 0.020 0.419± 0.002 0.350± 0.014 0.260± 0.004 0.350± 0.012

Precision 0.550± 0.003 0.652± 0.003 0.398± 0.011 0.639± 0.005 0.566± 0.003 0.696± 0.002 0.558± 0.003
Recall 0.546± 0.003 0.674± 0.003 0.421± 0.014 0.656± 0.005 0.604± 0.003 0.739± 0.003 0.578± 0.003

Accuracy 0.692± 0.004 0.831± 0.002 0.578± 0.009 0.783± 0.004 0.707± 0.004 0.843± 0.002 0.716± 0.004

Skintones Skintone 3 Skintone 4 Skintone 4 Skintone 5 Skintone 5 Skintone 6 Skintone 6

Method Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.937± 0.003 0.850± 0.002 0.893± 0.003 0.785± 0.017 0.838± 0.004 0.642± 0.018 0.628± 0.006
NMI@1 0.947± 0.001 0.927± 0.002 0.946± 0.000 0.943± 0.002 0.957± 0.004 0.948± 0.004 0.960± 0.009
UKL 0.241± 0.006 0.339± 0.012 0.240± 0.008 0.371± 0.012 0.288± 0.013 0.547± 0.010 0.483± 0.014

Precision 0.672± 0.003 0.471± 0.005 0.644± 0.003 0.355± 0.011 0.570± 0.001 0.258± 0.005 0.492± 0.021
Recall 0.708± 0.003 0.518± 0.005 0.695± 0.002 0.386± 0.011 0.602± 0.001 0.275± 0.005 0.511± 0.019

Accuracy 0.842± 0.003 0.632± 0.005 0.798± 0.002 0.545± 0.009 0.747± 0.002 0.430± 0.010 0.678± 0.015

Table 17: Absolute performance for all CelebA subgroups. Metrics over each Fitzpatrick Skintone
subgroup in the CelebA test dataset respectively, in representation space and downstream classification
(logistic regressor) over 3 seeds for standard methods and PARADE in CelebA.

example, here we use Recall@1 to determine the optimal choice of hyperparameters and validate
with the other two considered metrics. However, for LFW, which has a high population of singleton
classes (see Figure 7), NMI would be a better metric to use for selecting optimal point.

D IMPLEMENTATION DETAILS

D.1 DATASET ATTRIBUTE INFORMATION

Dataset manipulation for the CARS196 and CUB200 manually class imbalanced experimentsis
explained in Section 3.3.
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Sensitive Target class
II
III
IV
V
VI
I

Figure 10: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for Fitzpatrick Skintone CelebA experiments: the sensitive attribute embedding (left) and the class
label embedding (right).

Overall
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.268± 0.01 0.306± 0.008 0.329± 0.002 0.381± 0.004 0.187± 0.006
NMI 0.849± 0.005 0.859± 0.002 0.865± 0.001 0.869± 0.001 0.854± 0.001
UKL 0.118± 0.021 0.089± 0.014 0.129± 0.001 0.103± 0.001 1.815± 0.011

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.8± 0.0 0.804± 0.017 0.762± 0.002 0.8± 0.003 0.887± 0.002
Precision 0.789± 0.003 0.793± 0.016 0.767± 0.001 0.788± 0.004 0.878± 0.003

Recall 0.827± 0.0 0.831± 0.015 0.801± 0.003 0.823± 0.003 0.913± 0.002

Table 18: Overall results on LFW. Metrics over entire test dataset in representation space and
downstream classification (random forest) over 3 seeds for standard methods and PARADE in LFW.
Note: Due to the number of singleton classes in LFW, Recall@1 is not considered a good metric of
performance for this dataset.

Subgroup Gap
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.039± 0.017 0.061± 0.017 0.075± 0.014 0.068± 0.013 0.054± 0.01
NMI 0.048± 0.011 0.057± 0.003 0.041± 0.003 0.048± 0.003 0.048± 0.003
UKL 0.176± 0.019 0.157± 0.011 0.163± 0.003 0.165± 0.005 0.357± 0.012

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.04± 0.01 0.038± 0.012 0.049± 0.005 0.038± 0.005 0.025± 0.004
Precision 0.036± 0.018 0.041± 0.014 0.04± 0.005 0.037± 0.007 0.025± 0.007

Recall 0.066± 0.017 0.076± 0.015 0.066± 0.006 0.071± 0.007 0.041± 0.006

Table 19: Gap study on LFW. Average gaps in representation space and downstream classification
(random forest) over 3 seeds between minoritized and majoritized classes (Race) for standard methods
and PARADE in LFW.

Asian Black Indian White
Margin · Distance

PARADE Standard PARADE Standard PARADE Standard PARADE Standard

UPSTREAM
EMBEDDING

Recall@1 0.262± 0.028 0.31± 0.014 0.289± 0.011 0.331± 0.016 0.238± 0.027 0.325± 0.032 0.338± 0.004 0.39± 0.004
NMI 0.894± 0.003 0.914± 0.005 0.858± 0.001 0.882± 0.005 0.948± 0.007 0.951± 0.007 0.862± 0.001 0.868± 0.0
UKL 0.304± 0.003 0.265± 0.003 0.456± 0.009 0.417± 0.013 0.141± 0.002 0.133± 0.005 0.137± 0.002 0.107± 0.001

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.81± 0.007 0.828± 0.008 0.827± 0.005 0.853± 0.007 0.772± 0.011 0.814± 0.012 0.754± 0.002 0.794± 0.003
Precision 0.715± 0.012 0.726± 0.013 0.743± 0.008 0.759± 0.014 0.664± 0.006 0.711± 0.01 0.747± 0.002 0.769± 0.004

Recall 0.713± 0.013 0.72± 0.014 0.751± 0.008 0.758± 0.01 0.657± 0.008 0.702± 0.011 0.773± 0.002 0.798± 0.003

Table 20: Absolute performance for all LFW subgroups. Metrics over each Race subgroup in the
LFW test dataset respectively, in representation space and downstream classification (random forest)
over 3 seeds for standard methods and PARADE in LFW.

For CUB200 bird color experiments, we utilized the labeled bird color attributes from Wah et al.
(2011). Each image can have multiple “primary color" labels. Therefore, we take the mode over
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Table 21: Benchmarking additional fairness improvement methods in downstream classification
on LFW. Overall performance and subgroup gaps for Domain-Independent Training and Oversam-
pling (Wang et al., 2020b) on LFW with Race attribute.

(a) Domain-Independent Training

METRIC ↓ ArcFace Margin (D) N-Pair

Overall
ACCURACY 0.759 ± 0.017 0.753 ± 0.002 0.861 ± 0.005
PRECISION 0.793 ± 0.010 0.786 ± 0.003 0.872 ± 0.003
RECALL 0.799 ± 0.012 0.792 ± 0.003 0.889 ± 0.003

Gap
ACCURACY 0.093 ± 0.011 0.095 ± 0.006 0.029 ± 0.009
PRECISION 0.030 ± 0.011 0.020 ± 0.009 0.029 ± 0.010
RECALL 0.040 ± 0.012 0.044 ± 0.008 0.026 ± 0.010

(b) Oversampling

METRIC ↓ ArcFace Margin (D) N-Pair

Overall
ACCURACY 0.775 ± 0.017 0.767 ± 0.004 0.881 ± 0.004
PRECISION 0.771 ± 0.014 0.762 ± 0.002 0.873 ± 0.005
RECALL 0.815 ± 0.014 0.807 ± 0.002 0.909 ± 0.004

Gap
ACCURACY 0.070 ± 0.012 0.072 ± 0.006 0.032 ± 0.006
PRECISION 0.020 ± 0.013 0.024 ± 0.009 0.027 ± 0.009
RECALL 0.023 ± 0.013 0.031 ± 0.011 0.036 ± 0.008

Sensitive Target class
White
Indian
Black
Asian

Figure 11: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for Race LFW experiments: the sensitive attribute embedding (left) and the class label embedding
(right).

Dataset Protected Attribute
Protected Attribute

Values

CUB200-2011 Color
Black, Blue, Brown, Buff, Green, Grey, Iridescent

Olive, Orange, Red, White, Yellow

CelebA
Fitzpatrick Skintone

Category I, II, III, IV, V, VI
LFW Race Asian, Black, Indian, White

Table 22: Summarizing attribute information. Protected attribute examined and associated values
taken by the protected attribute in each dataset analyzed w.r.t. a sensitive attribute in the main paper
(CUB200, CelebA, LFW).

all bird colors labeled for each image in order to determine a single bird color associated with the
image. For CelebA, we calculate the Fitzpatrick skintone based on the image pixel information for
each image. The calculation is described in Section D.2. For LFW, we construct the “Race" attribute
from labels of “White", “Black", “Asian," and “Indian" as labelled by Kumar et al. (2009). For each
of these attributes, the labelling provided by Kumar et al. (2009) has a float value, which we map
to binary values: the image is considered to have the attribute if the value is greater than 0, and the
image is considered to not have the attribute if the value is less than 0. Naturally, the labelling is not
necessarily correct for each image, as the confidence about the “Race" labelling can be quite low for
some images. We remove all images without at least one of these attributes, though we note that
these attributes do not encompass all races. Therefore, our analysis may not be relevant for other
races not labelled by Kumar et al. (2009).
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Figure 12: Exploring fairness-utility tradeoffs in PARADE on CUB200 over grid of αSA and ρ values.
Overall performance (left column), subgroup gap (middle column) and worst-group performance
(right column) over metrics Recall@1 (top row), NMI (middle row), and UKL (bottom row) in
PARADE on CUB200. αSA and ρ in PARADE objective (Section 4) varied from 0.1 to 0.9, and 1 to
3000, respectively.

D.2 FITZPATRICK SKINTONE CALCULATION

We follow the methods from Cheng et al. (2021) for calculation of Fitzpatrick Skintone based on
image pixel information. However, we calculate these values for CelebA, as opposed to CelebA-
HQ. As CelebA-HQ incorporates higher resolution images, but has fewer images, our process of
Fitzpatrick Skintone calculation on CelebA is slightly modified to account for lower resolution, and
differing image size.

In Cheng et al. (2021), two sample skin patches are selected from each image of CelebA-HQ to
determine the skintone. We select three sample skin patches, as we are forced to reduce the dimensions
of the patches to account for the smaller image size of CelebA. Additionally, we leverage facial
landmark attributes provided by CelebA Liu et al. (2015) in order to choose our sample patches.
Specifically, given the (x, y) landmarks for the left eye, right eye, and nose for each image, we choose
to sample square patches of size 20× 20 (all 3 color channels are selected) with the following center
points:

(xleft eye, ynose)

(xright eye, ynose)

(xnose, ynose)

The first two center points are intended to capture the likely location of the left and right cheeks,
respectively, as these are likely located below each eye and adjacent to the nose. The last center
point is the nose. We note that this protected attribute generation is not perfect. In some cases, such
label generation can accidentally use aspects of the background, if, the individual’s face position
in the image is not facing forward. Also, extreme lighting can lead to misclassification of skintone.
Nonetheless, we believe the procedure provides a good approximation of Fitzpatrick skintone category,
but do not recommend these attribute labels for use outside of fairness analysis.
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The selected sample patches are converted to CIELab-space to retrieve the L (luminance) and b
(yellow) values. We then calculate the Mean Individual Typology Angle (ITA) value:

ITA = arctan

(
L− 50

b

)
× 180◦

π

Table 23: Fitzpatrick Skin Tone Categories corresponding to Mean ITA values, information taken
from Cheng et al. (2021)

ITA Range Fitzpatrick Category Description

50 ≤ ITA I Extremely Light
40 ≤ ITA < 50 II Very Light
30 ≤ ITA < 40 III Light / Somewhat Light
20 ≤ ITA < 30 IV Dark / Somewhat Dark
10 ≤ ITA < 20 V Very Dark

ITA < 10 VI Extremely Dark

Based on the Mean ITA calculation, we classify each image into one of the 6 Fitzpatrick skintone
categories, as listed in Table 23. To calculate subgroup gaps, we calculate gaps between the mean
value over the 3 lightest Fitzpatrick skintones and the mean value over the 3 darkest Fitzpatrick
skintones.

D.3 TRAINING PARAMETERS

For CUB200 and CARS196, we did not perform hyperparameter search but followed reported
hyperparameters from Roth et al. (2020c) for best performance with an ImageNet Deng et al. (2009)
pretrained ResNet50 He et al. (2016) and frozen batch normalization layers. As detailed in Roth
et al. (2020c), we train for 150 epochs with embedding dimension 128, learning rate 0.00001
with no scheduler, and weight decay 0.0004. We train with a batch size of 128, with the Adam
optimizer Kingma & Ba (2015) over five seeds inclusive for the balance control datasets, and for
CUB200 color experiments; and seeds 0 − 9 for the manually class imbalanced experiments. For
training transforms, we normalize each image using color channel means (0.485, 0.456, 0.406) and
standard deviations (0.229, 0.224, 0.225), randomly crop the image and re-size to 224 × 224 and
horizontally flip with probability 0.5. For testing transforms, we normalize each image with the
aforementioned color channel means and standard deviations, resize to 256× 256, and center crop to
224× 224.

For CelebA and LFW, we performed hyperparameter search over the following hyperparameters:
architectures: ResNet50 He et al. (2016), and SE-Net50 (both with and without frozen batch
normalization layers); number of training epochs; learning rates; last linear layer learning rate
(differ from other layer learning rates); learning rate schedulers; embedding dimensions: 64, 128,
256; pre-training; image augmentations. We evaluated hyperparameter sets on a validation set we
cut from the typical training set (20% of training set), and chose the set of hyperparameters with
best recall@k score for CelebA and best NMI score for LFW. NMI is used for LFW due to the high
number of singleton classes present in the dataset (recall@1 is meaningless for singleton classes).

For CelebA, we train on the ResNet50 He et al. (2016) architecture with frozen batch normaliza-
tion layers, for 125 epochs with learning rate 0.00001, and no scheduler, weight decay 0.0004,
Adam Kingma & Ba (2015) optimizer, and batch size of 128. For training transforms, we normalize
each image using color channel means (0.5, 0.5, 0.5) and standard deviations (0.5, 0.5, 0.5), resize to
256× 256, center crop to 224× 224 and horizontally flip with probability 0.5. For testing transforms,
we normalize each image with the aforementioned color channel means and standard deviations,
resize to 256× 256, and center crop to 224× 224. We average over runs with seeds 0− 2, inclusive.

For LFW, we train on the ResNet50 He et al. (2016) architecture with frozen batch normalization
layers, for 125 epochs with initial learning rate 0.00001 for all model parameters except the last linear
layer, which has initial learning rate 0.0001, and a multi-step learning rate scheduler which reduces
the learning rate by a factor of 0.3 at epochs 50 and 100, weight decay 0.0004, Adam Kingma & Ba
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(2015) optimizer, and batch size of 64. For training transforms, we normalize each image using color
channel means (0.5, 0.5, 0.5) and standard deviations (0.5, 0.5, 0.5), resize to 256× 256, center crop
to 224× 224 and horizontally flip with probability 0.5. For testing transforms, we normalize each
image with the aforementioned color channel means and standard deviations, resize to 256× 256,
and center crop to 224× 224. We average over runs with seeds 0− 2, inclusive.

For each dataset we chose a set of loss and batch mining strategies that have historically been used
for the relevant task, encompassing a broad range of methods, and / or achieved good performance.
However, for n-pair loss and sampling, good performance was not achieved for the facial datasets
despite use in the past for facial recognition Sohn (2016). For manually class imbalanced experiments
with CARS196 and CUB200 and the associated balanced controls, we used: margin loss / distance-
weighted sampling, margin loss / semi-hard sampling, triplet loss / distance-weighted sampling, triplet
loss / semi-hard sampling, contrastive loss / distance-weighted sampling, multisimilarity loss, and
proxy-NCA loss. For the color experiments with CUB200, we used: margin loss / distance-weighted
sampling. For CelebA and LFW, we used: margin loss / distance-weighted sampling, arcface loss,
and n-pair loss and sampling. For all testing and evaluation experiments with PARADE, we used
margin loss and distance-weighted sampling, but PARADE can be used with any loss and mining
strategy.

DML-specific parameters Here we list the hyperparameters that we use for each evaluated loss
function and batch mining strategy, if applicable. Refer to A for explicit formulas associated with the
parameters here. We set γ = 0.2 in semi-hard mining. For distance-weighted mining, we set λ = 0.5
and clip the maximum distance to 1.4. In the triplet objective, we use γ = 0.2 for triplet loss. For
margin loss, the learning rate of the boundary β is set to 0.0005, with initial value 1.2 and triplet
margin γ = 0.2. For N-Pair uses embedding regularization parameter ν = 0.005. In Multisimilarity
loss, we use α = 2, β = 40, λ = 0.5 and ϵ = 0.1. Finally, for ArcFace, additive angular margin
penalty is set to γ = 0.5, while scaling parameter s = 16 and class centers are optimized with
learning rate 0.0005.

The two PARADE parameters, αSA and ρ, as described in Section 4, were optimized via worst-group
performance over a grid search. For CUB200, we set αSA = 0.3, ρ = 1500. For CelebA, we set
αSA = 0.1, ρ = 1000. For LFW, we set αSA = 0.3, ρ = 100.

D.4 FAIRNESS EVALUATION

For each dataset, we calculate subgroup gaps between the majoritized and minoritized subgroup
(CARS196, CUB200 class, CelebA) or between the worst-performing subgroup and other subgroups
(LFW). In CUB200 color experiments, due to the large number of subgroups, we calculate the gap
between the top 6 performing subgroups and the bottom 6 performing subgroups (there are 12 total
subgroups).

Upstream In the upstream embedding tasks, in which we denote ϕ as the embedding function for
the learned model, and use A(x) to denote the value of the attribute A for data point x, we calculate
recall@1 for data samples in X with associated class label Y and attribute a ∈ A as:

Recall@k =
1

|{x ∈ X : A(x) = a}|
∑

{x∈X:A(x)=a}

{
1 ∃x̃ ∈ NNk(x) : Y (x̃) = Y (x)

0 else

Note here that the nearest neighbors function is computed with respect to all x ∈ X , not exclusively
x ∈ X with attribute a ∈ A, but the input to the nearest neighbors function is exclusively {x ∈ X :
A(x) = a}. To calculate NMI, let C be the output of a clustering algorithm C on the entire dataset
X , i.e. C = C(X) and let C|S denote the output of clustering algorithm C restricted to some subset
S ⊂ X . The important note here is that the clustering algorithm is run over the entire dataset, but
C|S expresses the cluster labels only for S ⊂ X . Then, we measure NMI for data samples in X with
associated class label Y and attribute a ∈ A as:

NMI =
I(Y ({x ∈ X : A(x) = a}); C|{x∈X:A(x)=a})

H(Y ({x ∈ X : A(x) = a})) +H(C|{x∈X:A(x)=a})

We calculate UKL for data samples in X with attribute a ∈ A as:
UKL(X) = DKL

(
UD,Sϕ({x∈X:A(x)=a})

)
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where Sϕ({x∈X:A(x)=a}) denotes the singular values over ϕ({x ∈ X : A(x) = a}).

Downstream In the downstream tasks, for data samples in X with class label Y , and predictor Ŷ ,
let Y (x) express the value of the ground-truth label for data sample x and let Ŷ (x) express the value
of the predicted label. Then, we denote TP (y)

a the number of true positives with attribute a ∈ A:

TP (y)
a = {x ∈ X : A(x) = a, Y (x) = y, Ŷ (x) = y}

FP
(y)
a the number of false positives with attribute a ∈ A

FP (y)
a = {x ∈ X : A(x) = a, Y (x) = y, Ŷ (x) ̸= y}

and FN (y)
a the number of false negatives with attribute a ∈ A:

FN (y)
a = {x ∈ X : A(x) = a, Y (x) ̸= y, Ŷ (x) = y}

for y ∈ Y .

We calculate macro-averaged recall for data samples in X with associated class label Y and attribute
a ∈ A as:

Recall =
1

|Y |
∑
y∈Y

TP
(y)
a

TP
(y)
a + FN

(y)
a

where |Y | is the number of possible class labels, i.e. the size of the set of all possible values of Y . We
calculate macro-averaged precision for data samples in X with associated class label Y and attribute
a ∈ A as:

Precision =
1

|Y |
∑
y∈Y

TP
(y)
a

TP
(y)
a + FP

(y)
a

We calculate accuracy for data samples in X with associated class label Y and attribute a ∈ A as:

Accuracy =
|{x ∈ X : A(x) = a, Y (x) = Ŷ (x)}|

|{x ∈ X : A(x) = a}|

The subgroup gaps are then considered to be the difference between the metric value for the majori-
tized subgroup and the metric value for the minoritized subgroup (CARS196, CUB200, CelebA);
or between the metric value for each subgroup with better performance than the worst-performing
subgroup and the metric value for the worst-performing subgroup (LFW). As stated in Section D.4,
for CUB200 bird color experiments, the subgroup gaps were calculated between the top performing
50% of subgroups and bottom performing 50 of subgroups.
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ABSTRACT

Recent studies found that using machine learning for social applications can lead
to injustice in the form of racist, sexist, and otherwise unfair and discriminatory
outcomes. To address this challenge, recent machine learning algorithms have
been designed to limit the likelihood such unfair behavior occurs. However, these
approaches typically assume the data used for training is representative of what
will be encountered in deployment, which is often untrue. In particular, if certain
subgroups of the population become more or less probable in deployment (a phe-
nomenon we call demographic shift), prior work’s fairness assurances are often
invalid. In this paper, we consider the impact of demographic shift and present a
class of algorithms, called Shifty algorithms, that provide high-confidence be-
havioral guarantees that hold under demographic shift. Shifty, the first technique
of its kind, demonstrates an effective strategy for designing algorithms to overcome
demographic shift’s challenges. We evaluate Shifty using a real-world dataset
of university entrance exams and subsequent student success. We show that the
learned models avoid bias under demographic shift, unlike existing methods. Our
experiments demonstrate that our algorithm’s high-confidence fairness guarantees
are valid in practice and that our algorithm is an effective tool for training models
that are fair when demographic shift occurs.

1 INTRODUCTION

As machine learning (ML) algorithms continue to be used to aid decisions in socially impactful
applications (Angwin et al., 2016; Goodall, 2016; Olson, 2011), it is becoming increasingly important
to ensure that trained models are able to avoid bias and discrimination. Observations that the use of ML
algorithms might have unexpected social implications, such as bias with respect to sex or race, have
led to the creation of algorithms that provide high-confidence fairness guarantees (Thomas et al., 2019;
Agarwal et al., 2018). These guarantees rely on the assumption that the data the model is trained with
and the data encountered after deployment follow the same distribution. However, this assumption
is false for many real-world problems (Zhuang et al., 2021), and, as we demonstrate, models often
violate these guarantees and exhibit unfair bias when evaluated on data from a different distribution.

As an example, consider a model that uses university entrance exam scores to predict subsequent
success. Because student demographics, such as race or sex, can shift over time, the distribution
of applicants may change between model training and deployment. As a result, even if the model
is trained to protect a disadvantaged group, if the learning algorithm assumes the training and
deployment distributions are the same, many fairness guarantees will not hold in practice (Section 4
empirically verifies this claim). We refer to such distribution change as demographic shift. Specifically,
demographic shift occurs when the difference between the training and deployment distributions can
be explained by a shift in the marginal distribution of a single random variable, such as race or sex.

We present Shifty, the first strategy for designing ML algorithms that provide high-confidence
guarantees that one or more user-specified fairness constraints will hold despite a demographic shift
between training and deployment. We design Shifty algorithms to work in two scenarios based on
what the user knows at training regarding the demographic shift: (1) the old and new demographic
proportions are known, or (2) the demographic proportions are bounded in known intervals.

We evaluate Shifty on a real-world dataset of students’ college entrance exam scores and their
subsequent grade point average (GPA) in the Brazilian university system (da Silva, 2019). We compare
Shifty to three families of existing algorithms: Fairness Constraints (Zafar et al., 2017), which aim
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to enforce a specific definition of fairness without guarantees, and Seldonian algorithms (Thomas et al.,
2019) and Fairlearn (Agarwal et al., 2018), both of which provide high-confidence fairness guarantees.

Shifty allows the user to provide (one or multiple simultaneous) fairness definitions from a large
class appropriate to the application domain, such as demographic parity, disparate impact, equalized
odds, predictive equality, and individual fairness. Unlike all prior algorithms, Shifty algorithms
provide high-confidence guarantees that the learned model satisfies these fairness constraints even
when deployed on a distribution different from the training one. We demonstrate empirically that
models learned by previous algorithms do, at times, violate the desired properties under demographic
shift, while Shifty’s models do not. If there is insufficient training data, or if the specified fairness
properties are simultaneously unsatisfiable, Shifty algorithms are designed to return no solution,
but we show that this rarely happens in practice. Finally and crucially, we demonstrate empirically
that, in our evaluated domain, Shifty is able to learn models that exhibit no loss of accuracy
compared to the models that do not guarantee fairness, as long as sufficient training data exists.

Our main contributions are: (1) the first classification algorithms that provide high-confidence fairness
guarantees under demographic shift, (2) a constructive proof of the guarantees, and a method for
creating such algorithms, (3) an evaluation on real-world data, and (4) an open-source Shifty
implementation and a release of all our data.

2 BACKGROUND AND RELATED WORK

We illustrate our approach on fair classification, although the methods we propose are easily extended
to other problems, such as regression (Thomas et al., 2019) and contextual bandits (Metevier et al.,
2019). In this setting, a data instance consists of a set of features and an associated label. When
considering the fairness of a classifier, each instance can be augmented with a fairness attribute. This
information is often not used for prediction (e.g., some laws prohibit the use of race or sex in hiring
decisions), but is assumed available for determining if the classifier exhibits bias.

We denote features by X ∈ X , labels by Y ∈ Y , and the fairness attribute by S ∈ S . We assume that
(X,Y, S) is sampled from some joint probability distribution defined over X ×Y×S . The naı̈ve clas-
sification setting ignores the fairness attribute, and the goal is to accurately predict the label associated
with X when its true label is unknown. These predictions are generated using a model, θ : X → Y .
A loss function, such as expected classification error, measures the quality of θ. To obtain an accurate
classifier, one typically selects a training algorithm, a, designed to minimize the chosen loss, and sup-
plies it with a dataset consisting of n observations sampled independently from the joint distribution—
that is, D = {(Xi, Yi, Si)}ni=1, where Pr(Xi, Yi, Si) := Pr(X,Y, S) for all i ∈ {1, ..., n}.
To assess the fairness of an algorithm, the user provides a function, g, which accepts a model and is
calibrated so g(θ) > 0 if and only if θ behaves unfairly. Typically, g depends on the fairness attribute,
S. For example, to assess if a classifier is biased based on race, g might measure the difference in the
classifier’s accuracy for individuals of one race compared to another.

Importantly, g can be defined based on the particular fairness requirements of a given applica-
tion. Here, we consider the illustrative case where g(θ) is based on conditional expected value.
(Appendix D extends our approach to handle more general definitions of g.) Concretely, let
H := h(X,Y, S, θ) define some choice of real-valued observable, let ξ := c(X,Y, S, θ) be
some event, and let τ represent a real-valued tolerance. We then assume that g is defined by
g(θ) := E

[
H

∣∣ ξ ]−τ . For example, if for a binary classification problem, the fairness attribute is sex,
and the user wants to ensure that the false-positive rate of the model is below 20% for females, one
might set g(θ) = E

[
θ(X)

∣∣Y=0, S=female
]
− 0.2. While this form of g is not flexible enough

to represent many widely used notions of fairness, it serves to illustrate our strategies for account-
ing for demographic shift, which are straightforward to apply to more sophisticated definitions, as
Appendix D shows.

Given a definition for g, we say that a training algorithm, a, is fair with high confidence if

Pr
(
g(a(D)) ≤ 0

)
≥ 1−δ, (1)

for some confidence threshold, δ ∈ [0, 1]. Allowing the user to set δ during training overcomes the
problem that guaranteeing fairness with absolute certainty is often impossible (Thomas et al., 2019).
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It is possible that for some g provided by the user, there is no model θ that satisfies g(θ) ≤ 0 and,
consequently, no algorithm a that satisfies (1). To address this, we adopt the convention described
by Thomas et al. (2019) and permit algorithms to return NO SOLUTION FOUND (NSF), which
is assumed to be fair by definition—that is, we assume that g(NSF) = 0. Intuitively, if a fair
predictive model cannot be found, such algorithms are permitted to abstain from outputting an unfair
predictive model, instead alerting the user that the fairness constraints could not be enforced with the
required probability using the data provided. Since the trivial algorithm, a(D) = NSF satisfies (1) by
definition, we seek algorithms that satisfy (1) but return useful predictive models as frequently as
possible, and we explicitly evaluate this consideration in our experimental designs.

Fair Classification under Demographic Shift: To reason about differences between the training and
deployment data distributions, we augment each data instance with a random variable representing
a demographic attribute, denoted by T ∈ T . The demographic attribute is often distinct from the
other variables defining each observation, but does not need to be. For example, a user might seek a
model that avoids unfair bias against individuals of a particular sex, even if the distribution of the
individuals’ race differs from the training distribution. In this case, S would represent the sex of an
individual, while T would represent their race.

Given the demographic attribute, we let (X,Y, S, T ) represent an instance observed during training
and let (X ′, Y ′, S′, T ′) represent an instance encountered once the model is deployed. To formalize
the effect of demographic shift, we assume that the demographic attribute’s marginal distribution may
change between training and deployment, but that the pre- and post-shift joint distributions over the
instances are otherwise identical. This can be summarized by the following two conditions, which
we refer to as the demographic shift assumptions:

∃ t ∈ T s.t. Pr(T = t) ̸= Pr(T ′ = t), and (2)

∀ (x, y, s, t), Pr(X=x, Y=y, S=s |T=t) = Pr(X ′=x, Y ′=y, S′=s |T ′=t). (3)

Because the fairness of a model—that is, the value of g(θ)—implicitly depends on X , Y , and
S, it follows that guarantees of fairness based on g may fail to hold after the model is deployed,
which corresponds to replacing these random variables with X ′, Y ′ and S′. Formally, if H ′ =
h(X ′, Y ′, S′, θ) and ξ′ = c(X ′, Y ′, S′, θ), so that g′(θ) = E

[
H ′

∣∣ξ′]− τ measures the prevalence of
unfair behavior after θ is deployed, then the challenge presented by demographic shift is summarized
by the observation that, for all training algorithms a,

Pr
(
g(a(D)) ≤ 0

)
≥ 1−δ︸ ︷︷ ︸

Property A

≠⇒ Pr
(
g′(a(D)) ≤ 0

)
≥ 1−δ︸ ︷︷ ︸

Property B

.

Therefore, we address the following problem:

Problem Statement: Given a user’s description of possible demographic shift that might be present
between the training and deployment environments as well as one or more definitions of fairness,
design an algorithm, a, that provides high-confidence fairness guarantees that a returned model will
behave fairly once the model is deployed—that is, an algorithm that satisfies Property B.

In this paper, we assume the user’s description of the demographic shift is defined by a set of
upper and lower bounds on the marginal probability of each value of the demographic attribute after
deployment. Specifically, the user provides an input, Q := {(at, bt)}t∈T , encoding the assumption
that Pr(T ′=t) ∈ [at, bt] for all t ∈ T . However, the approach used by Shifty is general and can
be applied for other descriptions of demographic shift as well. Given Q of this form, we identify two
settings in which Shifty can be applied. In the case of known demographic shift, which occurs
when the user knows the exact post-deployment distribution over the demographic attribute, the
user sets at = bt = Pr(T ′=t) for each t ∈ T , and Shifty will be guaranteed not to output unfair
models under the specified deployment distribution. In the second setting, the user does not know
the exact demographic shift that will occur and instead specifies non-singleton intervals for each
Pr(T ′=t). We refer to this as the unknown demographic shift setting.

Related Work: While many strategies promote fair outcomes in ML models, most existing ap-
proaches do not offer fairness guarantees, and none provide guarantees under demographic shift.
Appendix A discusses these approaches in detail. At the high level, they include methods based on
enforcing hard constraints (Irani, 2015), soft constraints (Zafar et al., 2017; Smits and Kotanchek,
2005), chance-constrained programming techniques (Charnes and Cooper, 1959; Miller and Wagner,
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1965; Prékopa, 1970), or by pre- or post-processing training dataset and model predictions (Verma
et al., 2021; Salimi et al., 2019; Awasthi et al., 2020). Meanwhile approaches that have considered
fairness under distribution shift do not provide guarantees (Lipton et al., 2018).

The closest approach to ours is Seldonian algorithms (Thomas et al., 2019), which allow the user
to specify the fairness definition and provide high-probability fairness guarantees—that is, they
satisfy Property A. Seldonian algorithms perform well in real-world applications given sufficient data
(Thomas et al., 2019; Metevier et al., 2019), but their guarantees, unlike Shifty’s, become invalid
under demographic shift, as our experiments will show.

3 METHODOLOGY

Candidate Selection Fairness Test

HCUB

Figure 1: Shifty accepts a training dataset, D,
one or more fairness specifications (each consist-
ing of a definition of unfair behavior, g, and a
tolerance, δ ∈ [0, 1]), and a description of the
possible demographic shifts, Q, that might occur
after deployment. It first partitions the input data
into Dc and Df , and uses Dc to select a candi-
date model, θc. Then, it uses Q and Df to com-
pute a (1−δ)-probability high-confidence upper
bound (HCUB) on the value of g(θc) after deploy-
ment, for each fairness definition. If these upper
bounds are below zero, Shifty returns θc, and
otherwise returns NO SOLUTION FOUND (NSF).
Consequently, Shifty returns models that are
unfair after deployment with probability at most δ.

Algorithm 1 Shifty (D, g, δ, Q)
1: Dc, Df ← Partition(D)
2: θc ← TrainCandidate(Dc, g, δ,Q)
3: u← HighConfUB(θc, g,Df , δ,Q)
4: return θc if u ≤ 0 else NSF

An overview of Shifty is shown in Figure 1.
Motivated by the design principles of previ-
ous Seldonian algorithms (Thomas et al., 2019),
which are effective at designing algorithms that
satisfy Property A, Shifty algorithms consist
of three core components: data partitioning,
candidate selection, and a fairness test. First,
the data partitioning step splits the input dataset
into two parts, which are used to perform the
candidate selection and fairness test steps, re-
spectively (see Appendix B). Next, a candidate
model is trained. In practice, this can be per-
formed using any existing classification algo-
rithm, as the candidate selection step is not re-
sponsible for establishing the fairness guaran-
tees Shifty provides. Instead, once a candi-
date model is found, Shifty performs a fair-
ness test by computing a high-confidence up-
per bound on the prevalence of unfair behav-
ior when the candidate model is deployed in an
environment affected by the demographic shift
described by Q. If this high-confidence upper
bound is below zero, the candidate model is
likely to behave fairly once deployed, and the
candidate is returned. However, if the value of
the high-confidence upper bound is greater than
zero, then Shifty cannot show that the candi-
date model will behave fairly with the required
confidence, and returns NSF instead. Because
Shifty only returns candidate models if they
can be shown to be fair with high confidence
on the demographic-shifted deployment distri-
bution, it is guaranteed to satisfy Property B.

Algorithm 1 presents high-level pseudocode for classification algorithms that provide high-confidence
fairness guarantees under demographic shift. TrainCandidate implements the candidate selec-
tion step, and HighConfUB implements the high-confidence upper bound on g′(θc) that is used to
determine the output of the algorithm and to establish its theoretical guarantees. In the following
sections, we describe the candidate selection and fairness test steps in detail. Because it is the fairness
test that causes Shifty to satisfy Property B, we outline this component first.

3.1 THE SHIFTY FAIRNESS TEST

Given a candidate model, θc, Shifty’s fairness test consists of computing a (1−δ)-confidence upper
bound on g′(θc), which measures the prevalence of unfair behavior once θc is deployed. Therefore,
the primary challenge associated with designing an algorithm that satisfies Property B is computing a
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valid high-confidence upper bound on g′(θc) given Q, the description of the possible demographic
distributions that might be encountered upon deployment.

Here, we propose a strategy for computing high-confidence upper bounds on g′(θc), starting with the
simpler case in which the exact demographic shift is known and then extending this approach to the
case in which the shift is unknown. In both settings, we show how to compute these bounds using ap-
propriate confidence intervals. Our strategy is general and can be applied starting with many different
confidence intervals. For illustrative purposes, we derive bounds based on inversion of the Student’s
t-test (Student, 1908), leading to an implementation of Shifty which we call Shifty-ttest.
Importantly, our use of the Student’s t-test implies that the resulting high-confidence upper bounds
only hold exactly if Pr(H ′|ξ) is a normal distribution.

3.1.1 KNOWN DEMOGRAPHIC SHIFT

To begin, we consider the task of assessing unfair behavior when there is no demographic shift.
Given n i.i.d. samples {(Hi, ξi)}ni=1, where Hi := h(Xi, Yi, Si, θ) and ξi := c(Xi, Yi, Si, θ), one
can derive Uttest, a function that computes a high-confidence upper bound on E[H|ξ], by inverting
the commonly-used Student’s t-Test (Student, 1908):

Pr
(

E[H|ξ] ≤ Uttest(g,D, θ, δ)
)
≥ 1−δ. (4)

Specifically, if Iξ are the indices of the samples for which ξi = True and Nξ = |Iξ|, then

Uttest(g,D, θ, δ) :=
1

Nξ

∑
i∈Iξ

Hi +
σ(g,D, θ)√

Nξ

t1−δ,Nξ−1,

where t1−δ,Nξ−1 is the 1−δ quantile of the Student’s t distribution with Nξ−1 degrees of freedom,
and σ computes the sample standard deviation using Bessel’s correction,

σ(g,D, θ) :=

√√√√√ 1

Nξ−1
∑
i∈Iξ

Hi −
1

Nξ

∑
i∈Iξ

Hi

2

.

As g(θ) = E[H|ξ]− τ , it follows that in the absence of demographic shift, Property A is satisfied if
algorithm a only returns models satisfying Uttest(g,D, θ, δ)− τ ≤ 0, and otherwise returns NSF.

To provide fairness guarantees that hold under demographic shift, we require g′(θ) ≤ 0 with high
probability, where g′(θ) = E[H ′|ξ′] − τ . However, H ′ and ξ′ are defined with respect to the
demographic-shifted distribution, for which no samples are available. Thus, we seek a new random
variable, Ĥ , that can be computed from X , Y , and S, but which satisfies E[Ĥ|ξ] = E[H ′|ξ′]. Under
the demographic shift assumptions, the reweighted variable defined by Ĥ := ϕ(T )H satisfies these
requirements, where ϕ is an importance weight derived in Appendix C:

ϕ(t) :=
Pr(T ′=t|ξ′)
Pr(T=t|ξ)

=
Pr(ξ|T=t) Pr(T ′=t)

Pr(T=t|ξ)
∑
t′∈T

Pr(ξ|T=t′) Pr(T ′=t′)
, (5)

for all t ∈ T . Specifically, ϕ(T ) acts as a scaling factor that reweights samples obtained during
training so that their sample mean is an unbiased estimator of E[H ′|ξ′], as shown by Theorem 1.
Theorem 1. Assume that Pr(T=t) ≥ 0 for all t ∈ T . If the demographic shift properties hold, then
the random variable Ĥ := ϕ(T )H satisfies E[Ĥ|ξ] = E[H ′|ξ′], where ϕ is defined by (5). Proof.
See Appendix C.

Because Ĥ is defined with respect to pre-shift random variables, it is possible to generate i.i.d. samples
of Ĥ during training, even when no samples from the deployment distribution are available. In
particular, a set of i.i.d. observations of Ĥ is obtained by computing {Ĥi}i∈Iξ

, where each Ĥi =

ϕ(Ti)h(Xi, Yi, Si, θ). Using {Ĥi}i∈Iξ
, we apply the inversion of the Student’s t-test to derive

Ûttest(g,D, θ, δ), which satisfies Pr(E[Ĥ|ξ] ≤ Ûttest(g,D, θ, δ)) ≥ 1−δ. Specifically, if σ̂

denotes the sample standard deviation of the reweighted observations, {Ĥi}i∈Iξ
, then

Ûttest(g,D, θ, δ) :=
1

Nξ

∑
i∈Iξ

Ĥi +
σ̂(g,D, θ)√

Nξ

t1−δ,Nξ−1. (6)
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Since E[Ĥ|ξ] = E[H ′|ξ′] by Theorem 1, it follows that Ûttest is also a high-confidence upper
bound suitable for assessing fairness after demographic shift:

Pr
(
E[Ĥ|ξ] ≤ Ûttest(g,D, θ, δ)

)
= Pr

(
E[H ′|ξ′] ≤ Ûttest(g,D, θ, δ)

)
≥ 1−δ. (7)

Recalling that g′(θ) := E[H ′|ξ′] − τ , it follows that g′(θ) ≤ 0 with high probability if
Ûttest(g,D, θ, δ) − τ ≤ 0, where each Ĥi implicitly depends on θ by the definition, Ĥi :=
ϕ(Ti)h(Xi, Yi, Si, θ). From (7), it is clear that if the pre-shift conditionals, Pr(ξ|T=t) and
Pr(T=t|ξ), can be computed from the training data for all t ∈ T , and if the post-shift demo-
graphic marginals, Pr(T ′=t), are provided by the user during training, then a (1−δ)-confidence
upper bound g′(θ) can be computed even when data from the post-shift distribution is unavailable.

3.1.2 UNKNOWN DEMOGRAPHIC SHIFT

It is often unrealistic to assume that the post-shift marginal distribution is known exactly during
training. To address this, we consider the setting in which the user provides a set,Q := {(at, bt)}t∈T ,
that contains non-empty intervals describing marginal distributions over T ′ that might be encountered
after deployment. Given Q, we compute high-confidence upper bounds on g′(θ) by determining the
largest value of the high-confidence upper bound attained for a q ∈ Q.

First, we parameterize the high-confidence upper bound in (7) to explicitly depend on a particu-
lar choice of post-shift demographic distribution, q. Formally, we define Ûttest(g,D, θ, δ; q) by
replacing all occurrences of ϕ(Ti) in (6) with ϕ(Ti; q), given by

ϕ(t; q) :=
Pr(ξ|T=t)qt

Pr(T=t|ξ)
∑

t′∈T Pr(ξ|T=t′)qt′
, (8)

where qt = Pr(T ′=t) for one possible demographic-shifted demographic distribution. While the
true post-shift marginal distribution, q∗, is assumed to be unknown, it is clear that if q∗ ∈ Q, then
Ûttest(g,D, θ, δ; q∗) ≤ supq∈Q Ûttest(g,D, θ, δ; q). It follows that,

Pr
(
E[H ′|ξ′] ≤ sup

q∈Q
Ûttest(g,D, θ, δ; q)

)
≥ Pr

(
E[H ′|ξ′] ≤ Ûttest(g,D, θ, δ; q∗)

)
≥ 1−δ.

Consequently, if g′(θ) := E[H ′|ξ′] − τ , then an algorithm, a, can be designed to satisfy Prop-
erty B by following Algorithm 1 and defining the fairness test to only return models when
supq∈Q Ûttest(g,D, θ, δ; q)− τ ≤ 0. We propose to use a numerical optimizer to approximate the
supremum of Ûttest over q ∈ Q. In our implementations, we use simplicial homology optimization
(Endres et al., 2018), which converges to the global optima of non-smooth functions subject to
equality and inequality constraints such as those defined by the condition q ∈ Q.

3.2 CANDIDATE SELECTION

The candidate selection step searches over a set of candidate models to find a model, θc, that achieves
a small classification error. Because it is ultimately the fairness test that causes Shifty to satisfy
Property B, this step can be implemented using any procedure for training a classifier without
impacting the theoretical guarantees the algorithm provides. In practice, however, it is advantageous
to select a candidate model that, in addition to minimizing error, also appears to behave fairly. In
particular, if the model’s accuracy is correlated with the definition of unfair behavior, a candidate
selection procedure that solely optimizes accuracy will tend to select models that will fail the fairness
test, causing the overall algorithm to frequently return NSF.

To mitigate this problem, we perform candidate selection by minimizing a loss consisting of two
terms: one that measures classification error, and another that penalizes models that are predicted to
fail the fairness test. Specifically, if I[·] denotes the indicator function that returns 1 if its argument is
true and 0 otherwise, then the candidate model is found by minimizing,

ℓShifty-ttest(g,Dc, θ, δ;Q) :=
∑

(x,y)∈Dc

I[θ(x)̸=y]

|Dc|
+max

(
0, sup

q∈Q
Ûttest(g,Dc, θ, δ; q)

)
. (9)
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3.3 IMPLEMENTATION DETAILS FOR SHIFTY-TTEST

Having described strategies for computing high-confidence upper bounds on the prevalence of unfair
behavior under demographic shift, we now present the details for Shifty-ttest, an implementa-
tion Shifty based on the Student’s t-Test. Specifically, Shifty-ttest is designed according to
Algorithm 1, where the subroutine TrainCandidate minimizes (9), and HighConfUB computes
supq∈Q Ûttest(g,D, θ, δ; q)− τ . Consequently, Shifty-ttest produces binary classifiers that
are fair under demographic shift by leveraging user-provided bounds on the marginal distribution of
the demographic attribute after deployment.

4 EVALUATION

Our evaluation answers three research questions (RQ) regarding our algorithms’ behavior for over-
coming demographic shift compared to prior approaches that do not account for demographic shift.

[RQ1] Validity of fairness guarantees. In practice, do the models trained using Shifty-ttest
or prior approaches adhere to high-probability fairness guarantees under demographic shift? [RQ2]
Model accuracy. Is Shifty-ttest able to train models whose accuracy is comparable to those
produced by prior approaches that do not account for demographic shift? [RQ3] Data efficiency.
Does Shifty-ttest avoid returning NSF when reasonably sized training datasets are available?

Answering these research questions requires multiple pairs of datasets sampled from the same
underlying distribution and exhibiting a consistent demographic shift. Therefore, we generate multiple
training and deployment datasets by resampling from a fixed population using known distributions.
This design ensures that failures—that is, instances in which an algorithm returns unfair models with
a larger frequency than guaranteed—can be properly attributed to a failure of the algorithm instead of
a violation of the user’s assumptions on the demographic shift. In addition, oracle knowledge of the
training and deployment distributions can be used to compute exact values for accuracy, g(θ), and
g′(θ) during evaluation. We uniformly sample training datasets from the population, train models
using each algorithm, and evaluate the fairness of each model after deployment by selecting a new
distribution over the population that satisfies the user’s assumptions about the demographic shift.

Dataset: We sample training and deployment data from a dataset of 43,303 students from a university
in Brazil (da Silva, 2019). The dataset consists of tuples (X,Y, S, T ), where X is a vector of
entrance exam scores, Y is a binary label representing if the student’s GPA, between 0 and 4.0, was
above 3.0, the demographic attribute, T , is the student’s race, and S is the student’s sex. This data
allows us to train classifiers to predict academic success based on entrance exam scores, and assess
whether fairness guarantees that protect against discrimination based on sex would continue to hold
if demographic shift caused the marginal distribution over race to change during deployment.

4.1 EXPERIMENTS: KNOWN DEMOGRAPHIC SHIFT

First, we evaluate Shifty-ttest, prior Seldonian and Quasi-Seldonian algorithms (Thomas
et al., 2019), Fairlearn (Agarwal et al., 2018), and Fairness Constraints (Zafar et al., 2017). We
conducted experiments using these algorithms to enforce two fairness definitions—disparate impact
and demographic parity. Figure 5 formalizes these definitions, which were selected as representative
of real-world strategies for quantifying unfair behavior of classifiers (Verma and Rubin, 2018). To
assess the impact of demographic shift, we simulated one possible choice of demographic shift: the
left column of Figure 2 shows the uniformly sampled distribution used for training, and the middle
column shows the demographic-shifted deployment distribution used in our experiments.

For each experiment, we conducted 15 trials while varying the amount of training data in order
to identify dependencies on the training dataset’s size. For each trial, we uniformly sampled a
training dataset and trained models using our algorithm, standard Seldonian algorithms, Fairlearn,
and Fairness Constraints. Importantly, while Fairlearn was not designed to avoid disparate impact,
and Fairness Constraints was not designed to enforce either disparate impact or demographic parity
constraints, we include them to test if they might empirically be fair under demographic shift, despite
not being designed for this setting. After training, we recorded whether each algorithm produced a
model or NSF, as well as the average accuracy and prevalence of unfair behavior for each trained
model on both the training and demographic-shifted deployment distribution.
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(b) Demographic Parity:
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Figure 3: Results when enforcing fairness constraints under known demographic shift.

Race Pr(T=t) Pr(T ′=t) Q
race1 0.006 0.300 (0.004, 0.304)
race2 0.871 0.600 (0.610, 0.909)
race3 0.054 0.050 (0.038, 0.338)
race4 0.067 0.048 (0.047, 0.347)
race5 0.002 0.002 (0.002, 0.301)

Figure 2: Marginal distributions over anonymized
student race. The left column shows the distribu-
tion during training. The middle column shows
the deployed marginal distribution used in our
experiments for known demographic shift (Sec-
tion 4.1). The right column shows the bounds on
the marginal distribution used in our experiments
for unknown demographic shift (Section 4.2).

Figure 3 shows the results. For each definition
of fairness, the leftmost plot shows the proba-
bility with which each algorithm returns NSF.
To the right are two rows of plots showing eval-
uations of each algorithm on the training and
deployment distributions, respectively. Within
each row, the left plot displays the average ac-
curacy of models returned by each algorithm
when trained using various amounts of data. The
right plot in each row displays the frequency
with which each algorithm returns a model that
is unfair, which we call the failure rate. The
horizontal dashed line shows the maximum tol-
erance for unfair outcomes, δ=0.05, set when
training Shifty-ttest and the Seldonian al-
gorithms. Finally, standard error bars are shown
using shaded regions.

Our experiments confirm that Shifty algrithms effectively avoid unfair behavior after demographic
shift while prior algorithms do not. The failure rates of Shifty-ttest after demographic shift
occurs (bottom right plots in Figure 3) are always below the tolerance set during training. However,
while standard Seldonian algorithms were fair during training, they, along with Fairlearn and Fairness
Constraints, frequently violate that fairness constraint after deployment. Interestingly, Fairlearn
models were also fair when enforcing demographic parity constraints, though this was not true for
disparate impact. However, Fairlearn does not provide fairness guarantees, unlike Shifty-ttest.

Next, when provided with a sufficient amount of training observations, Shifty-ttest provided
guarantees of fairness without a noticeable loss in accuracy compared to the other baselines. The
plots in the middle column of Figure 3 show that Shifty-ttest produced models that achieved
the same accuracy as those trained using standard Seldonian algorithms, and outperformed both
Fairlearn and Fairness Constraints for sufficiently large training datasets. This provides evidence that
Shifty-ttest can be used to train fair models without incurring a significant loss in accuracy
compared to algorithms that do not provide such guarantees.

Finally, we found that Shifty-ttest’s data efficiency is lower than that of alternative algorithms
that ignore the impact of demographic shift. Shifty-ttest required slightly more training data
than standard Seldonian algorithms to consistently avoid returning NSF (left plots in Figure 3) and to
achieve comparable accuracy to those methods.
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(b) Demographic Parity:
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Figure 4: Results when enforcing fairness constraints under unknown demographic shift.

4.2 EXPERIMENTS: UNKNOWN DEMOGRAPHIC SHIFT

Next, we repeat our experiments from Section 4.1, but assume that the user has provided upper and
lower bounds on the marginal probability of encountering individuals of each race after deployment
instead of specifying the shift exactly. We generated these bounds, shown in the rightmost column of
Figure 2, by interpolating between the interval (0, 1) and the singleton interval containing the marginal
distribution over race under the training distribution, using an interpolation factor of 0.3. Given
this specification, we applied each algorithm to train models using the same procedure as described
in Section 4.1. To evaluate each model’s performance after demographic shift, we performed a
worst-case analysis and selected the deployment distribution over the population to satisfy the user’s
assumptions, but otherwise maximize the prevalence of unfair behavior when using that model to
generate predictions (See Appendix E). Figure 4 in Appendix 6 shows the results for disparate impact
and demographic parity, and Appendix F provides results based on three other definitions of unfair
behavior. As in Section 4.1, we include five plots that show the probability of each algorithm returning
NSF, average accuracy, and the failure rate of each algorithm before and after deployment.

These experiments confirm that Shifty-ttest can provide guarantees of fair behavior after
deployment, even when the post-shift marginal distribution over race is not exactly known. While
standard Seldonian algorithms are fair during training (Figure 4, top right), they are consistently
unfair after demographic shift occurs. However, Shifty-ttest was unable to produce models
that achieved the same accuracy as standard Seldonian algorithms. Some loss in accuracy is expected
when enforcing constraints that hold under demographic shift, which may be more limiting than
standard fairness constraints. Therefore, Shifty-ttest is effective when fairness guarantees are
critical, but these guarantees may cause decreased classification accuracy in some settings.

5 CONCLUSION

In this paper, we proposed Shifty, a strategy for designing classification algorithms that provide
high-confidence fairness guarantees that hold when the distribution of demographics changes between
training and deployment. This setting poses significant challenges for existing fair ML algorithms,
as the fairness guarantees they provide generally assume a constant data distribution. In contrast,
Shifty algorithms allow the proportions of demographics to change after training, provided the
user has some information describing this change. Shifty algorithms can be used when the new
demographic proportions are known, or when these proportions are bounded in known intervals.
Finally, we evaluated Shifty-ttest, an implementation of Shifty based on the Student’s t-test,
and found that the fairness guarantees it provides are empirically valid under demographic shift,
wherein models trained using existing fair algorithms consistently produced unfair outcomes.
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ETHICS STATEMENT

The primary goal of this research is to identify and overcome practical challenges, namely demo-
graphic shift, that might cause current algorithms to produce unfair outcomes. Our contributions
provide tools needed for data scientists and ML practitioners to use ML in conscientious, ethical
ways. However, we note that, when applying algorithms such as Shifty, it is important to carefully
select the definition of unfair behavior to be appropriate for the problem at hand. While we evaluate
Shifty using five standard definitions of unfair behavior for illustration, many definitions have been
proposed and studied (Verma and Rubin, 2018), some of which cannot be simultaneously enforced
(Chouldechova, 2017; Corbett-Davies et al., 2017; Kleinberg et al., 2017). Consequently, while
Shifty offers a valuable tool for enforcing fairness constraints, ML practitioners should carefully
study their target application, ideally working with domain experts and stakeholders, to ensure that
the definitions they select meaningfully capture the unfair behaviors they wish to avoid.

Next, we note that the fairness guarantees provided by Shifty may fail to hold if one or more
assumptions made by the algorithm do not hold. Most notably, if the demographic shift assumptions,
(2) and (3), do not hold for the user’s choice of demographic attribute T , then the guarantees provided
by Shifty may not hold in practice. Similarly, if the user’s specification of possible demographic
shift, defined by the inputQ, does not accurately represent the demographic shift that occurs, then the
guarantees provided by our algorithms may be invalidated. Thus, it is important that ML practitioners
study the application domain in order to ensure that the inputs they supply to Shifty are appropriate.

Finally, Shifty-ttest is based on inversion of the Student’s t-test, which only holds exactly
if the observations, Hi are not normal. While this approximation error becomes smaller as more
samples are used for training, the high-confidence guarantees provided by Shifty may not hold
with 1−δ probability when trained on very small datasets. Therefore, in applications for which very
few training observations are available, ML practitioners should employ Shifty algorithms based
on other, non-approximate confidence intervals.

REPRODUCIBILITY STATEMENT

To support efforts to reproduce our results, all code and data used in this paper will be made publicly
available upon publication. Proofs of our theoretical results can be found in Appendix C and
implementation details for our algorithms can be found in Section 3 and Appendix D. In addition,
experimental details can be found in Section 4, full descriptions of the fairness definitions we tested
are shown in Figure 5 of Appendix F, and additional results and experimental details are included in
Appendix E.
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A. Prékopa. 1970. On probabilistic constrained programming. In Princeton Symposium on Mathe-
matical Programming. 113–138.

Ashkan Rezaei, Anqi Liu, Omid Memarrast, and Brian D. Ziebart. 2021. Robust Fairness Under
Covariate Shift. Proceedings of the AAAI Conference on Artificial Intelligence 35, 11 (May 2021),
9419–9427. https://ojs.aaai.org/index.php/AAAI/article/view/17135

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional Fairness: Causal
Database Repair for Algorithmic Fairness. In International Conference on Management of Data
(SIGMOD). Association for Computing Machinery, Amsterdam, Netherlands, 793–810. https:
//doi.org/10.1145/3299869.3319901

Candice Schumann, Xuezhi Wang, Alex Beutel, Jilin Chen, Hai Qian, and Ed H Chi. 2019. Transfer
of machine learning fairness across domains. arXiv preprint arXiv:1906.09688 (2019).

Harvineet Singh, Rina Singh, Vishwali Mhasawade, and Rumi Chunara. 2021. Fairness violations
and mitigation under covariate shift. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. 3–13.

Guido F Smits and Mark Kotanchek. 2005. Pareto-front exploitation in symbolic regression. In
Genetic Programming Theory and Practice II. Springer, 283–299.

Student. 1908. The probable error of a mean. Biometrika (1908), 1–25.

Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy Brun, and Emma
Brunskill. 2019. Preventing undesirable behavior of intelligent machines. Science 366, 6468
(2019), 999–1004.

Sahil Verma, Michael Ernst, and René Just. 2021. Removing biased data to improve fairness and
accuracy. CoRR abs/2102.03054 (2021). https://arxiv.org/abs/2102.03054

Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In 2018 IEEE/ACM International
Workshop on Software Fairness (FairWare). IEEE, 1–7.

Bianca Zadrozny. 2004. Learning and evaluating classifiers under sample selection bias. In Proceed-
ings of the Twenty-First International Conference on Machine learning. 114.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. 2017.
Fairness constraints: Mechanisms for fair classification. In International Conference on Artificial
Intelligence and Statistics (AISTATS). 797–806.

Xiang Zhang and Yann LeCun. 2017. Universum prescription: Regularization using unlabeled data.
In Thirty-First AAAI Conference on Artificial Intelligence.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. 2021. A Comprehensive Survey on Transfer Learning. Proc. IEEE 109, 1 (2021), 43–76.
https://doi.org/10.1109/JPROC.2020.3004555

Daniel Zwillinger and Stephen Kokoska. 1999. CRC standard probability and statistics tables and
formulae. CRC Press. 31 pages.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17135
https://doi.org/10.1145/3299869.3319901
https://doi.org/10.1145/3299869.3319901
https://arxiv.org/abs/2102.03054
https://doi.org/10.1109/JPROC.2020.3004555


Under review as a conference paper at ICLR 2022

A ALTERNATIVE APPROACHES FOR ACHIEVING FAIR OUTCOMES

Designing algorithms that meet fairness requirements with high-confidence can be seen as a type of
constrained optimization problem. Algorithms that enforce hard constraints search for a predictive
model within a feasible set of models satisfying the user’s fairness constraints (Irani, 2015). Soft
constraints on the objective function used to guide the search for a model can achieve fairness empiri-
cally (Zafar et al., 2017), and multi-objective methods can be used to satisfy multiple, potentially
conflicting fairness objectives (Smits and Kotanchek, 2005). Unfortunately, algorithms based on hard
or soft constraints alone do not provide high-confidence fairness guarantees. Fair algorithms can be
designed based on chance-constrained programming (Charnes and Cooper, 1959; Miller and Wagner,
1965; Prékopa, 1970), in which an objective function is optimized subject to a set of constraints. This
formulation can provide high-confidence fairness guarantees but typically requires knowledge of the
distribution of each variable used to quantify fairness, which is often impractical. In contrast, our
methods provide assurances of fair behavior without these limiting assumptions.

In our work, we consider the problem of establishing high-confidence fairness guarantees that hold
under demographic shift, specifically when no samples are available from the deployment distribution.
While Shifty is, to our knowledge, the first to provide high-confidence guarantees of fairness in
this setting, there are several existing strategies for promoting fair outcomes under various forms
of distribution shift, which leverage a variety of assumptions. For example, approaches have been
proposed to promote fair outcomes under concept shift, which occurs when the distribution over
safety attributes and feature vectors changes between training and deployment. Schumann et al.
(2019) derive bounds describing how well fairness properties can be transferred from a source to a
target domain, and use them to propose training procedures that can improve the transferability of
fairness properties. While this approach could be applied to overcome demographic shift, it does not
provide guarantees that the resulting models will meet specific fairness tolerances, and it assumes
that data is available from the deployment distribution and therefore cannot be applied in the setting
we consider. In contrast to methods for overcoming concept shift, many works on promoting fairness
under distribution shift assume that the shift has a particular structure. For example, Dai (2020)
propose a fairness-aware model for label shift and label bias, which occur when the distribution over
the fairness attribute and feature vector is the same during training and after deployment, but the
conditional distribution over true labels differs. Similarly, Biswas and Mukherjee (2021) propose an
algorithm for promoting fair outcomes under prior probability shift, which occurs when the marginal
distribution of true labels changes between training and deployment, using proportional equality to
measure fairness. Unfortunately, the assumptions of label shift, label bias, and proportional equality
are contrary to the assumptions of demographic shift, so that these approaches cannot be applied to
the problem setting we consider.

Among the problem settings considered in prior work, the most similar setting to demographic shift is
covariate shift, which occurs when the distribution of fairness attributes and feature vectors changes
between training and deployment, but the conditional distribution over labels is unchanged. Indeed, if,
in addition to the demographic shift assumptions, the user assumes that the distribution of true labels
is conditionally independent of the demographic attribute given the features and safety attributes,
then demographic shift can be viewed as a form of covariate shift. Several approaches have been
proposed for promoting fair outcomes under covariate shift and various definitions of fairness, but
these approaches cannot be applied to our problem setting because they make the assumption that
samples are available from the deployment distribution. Furthermore, these approaches are not proven
to satisfy Property B (Rezaei et al., 2021; Coston et al., 2019). Singh et al. (2021) propose a training
algorithm that ensures that fairness properties of the resulting model are invariant to covariate shift
by exploiting a causal graph of the problem that is provided by the user. While this approach can be
applied without samples from the deployment distribution, the causal graph required by the algorithm
is often unknown, and the algorithm does not provide fairness guarantees. Finally, Du and Wu (2021)
propose an algorithm, RFLearn, that promotes fair outcomes under covariate shift without access to
data from the deployment environment. While this approach does not provide fairness guarantees,
and despite the differences between demographic shift and covariate shift, we include RFLearn in our
experimental designs for illustration.

We propose algorithms that produce fair models following the design principles outlined by Sel-
donian ML (Thomas et al., 2019) while accounting for demographic shift. Other ways to account
for demographic shift include augmenting training data with synthetically generated variations or
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antagonistic examples, or explicitly regularizing the training objective using unlabeled data from the
deployment distribution, which improves the models’ generalization (Goodfellow et al., 2016; Zhang
and LeCun, 2017). However, these approaches do not tackle fairness and cannot be directly applied
to provide fairness guarantees under demographic shift. If the change in distribution can be addressed
by a transformation of either the features or response variables, methods can learn this transformation
using access to data from the deployment distribution combined with assumptions, such as that
the transformation is linear (Fernando et al., 2014; Gong et al., 2012; Gopalan et al., 2011), or by
iteratively assigning predicted labels to unlabeled data from the deployment environment (Bruzzone
and Marconcini, 2009). However, such approaches are ill-suited for establishing high-confidence
fairness guarantees under demographic shift.

Approaches can account for the differences between the training and deployment environments by
reweighting the contribution of each training observation according to the relative probability of
encountering that observation. Such methods are effective at improving performance in classification
(Zadrozny, 2004; Huang et al., 2006), density estimation (Dudı́k et al., 2006), and regression (Huang
et al., 2006). While most of these approaches focus on accuracy, some have focused on safety
constraints, such as fairness. Lipton et al. (2018) proposed correcting for covariate shift by using a
reweighting scheme to compute intervals on a classifier’s confusion rates and applying a correction
step based on these intervals. This approach produces empirically fair models but does not provide
high-confidence guarantees. An algorithm’s fairness can be improved by manipulating the underlying
data, e.g., by removing data that violates fairness properties (Verma et al., 2021) or inserting data
inferred using fairness properties (Salimi et al., 2019). These methods, however, do not provide
guarantees. Fairness can also be enforced in post-processing (Awasthi et al., 2020) but, again, without
guarantees.

B DATA PARTITIONING

The data partitioning step ensures that the outcome of the candidate selection step is independent of
the outcome of the fairness test, which is necessary to guarantee that the overall algorithm satisfies
(1) under demographic shift.

To illustrate the requirement for this step, consider an algorithm that accepts a set of training
observations, D, uses D to select a candidate model, θc, and finally uses D again to evaluate the
high-confidence upper bound on g′(θc) to perform a fairness test. While this algorithm might appear
to be fair, it is not guaranteed to satisfy Property B because the output of candidate selection, θc, is
correlated with the outcome of the fairness test because the same input data, D, is used to perform
both steps. Consequently, it is possible that candidate selection can consistently select models that
cause the high-confidence upper bound used by the fairness test to under-estimate the value of g′(θc).
By ensuring that candidate selection and the fairness test use independent sets of observations, this
correlation is eliminated, causing the probability of the high-confidence upper bound failing to be no
more than δ as required by Property B.

Finally, we note that one area of future research might consider the optimal way to split an input dataset
into parts used for candidate selection, Dc, and for evaluating the fairness test, Df . Specifically,
increasing the size of Dc improves the ability of the candidate selection step to identify models that
are accurate and generalize well, but reduces the size of Df and makes the fairness test more difficult
to pass. In our experiments, we split the input data evenly between Dc and Df , but we hypothesize
that there may be more effective techniques for determining the optimal splitting proportion.

C PROOF OF THEOREM 1

Theorem 1. Assume that Pr(T=t) ≥ 0 for all t ∈ T . If the demographic shift properties hold, then
the random variable Ĥ := ϕ(T )H satisfies E[H ′|ξ′] = E[Ĥ|ξ], where ϕ is defined by (5).
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Proof. First, we write E[H ′|ξ′] as a sum over expected values conditioned on the value of the
demographic attribute by applying the law of total probability (Zwillinger and Kokoska, 1999):

E[H ′|ξ′] =
∑
t∈T

E[H ′|ξ′, T ′=t] Pr(T ′=t|ξ′)

=
∑
t∈T

E[H|ξ, T=t] Pr(T ′=t|ξ′). (Using (3))

Here, the second line follows from the second demographic shift assumption, which states that for
all t ∈ T and x, y, s ∈ X × Y × S, Pr(X ′=x, Y ′=y, S′=s|T ′=t) = Pr(X=x, Y=y, S=s|T=t).
Next, we multiply each term by Pr(T=t|ξ)/Pr(T=t|ξ) = 1, reorganize terms, and write the sum
over t ∈ T as a single expected value:

E[H ′|ξ] =
∑
t∈T

E[H|ξ, T=t]

(
Pr(T=t|ξ)
Pr(T=t|ξ)

)
Pr(T ′=t|ξ′)

=
∑
t∈T

E[H|ξ, T=t]

(
Pr(T ′=t|ξ′)
Pr(T=t|ξ)

)
Pr(T=t|ξ)

= E [ϕ(T )H|ξ] ,

where

ϕ(t) =
Pr(T ′=t|ξ′)
Pr(T=t|ξ)

.

Finally, we rewrite ϕ(t) to depend on the post-shift marginal distribution, Pr(T ′=t), and the pre-shift
conditional distributions, Pr(T=t|ξ) and Pr(C|T=t), for each t ∈ T :

ϕ(t) =
Pr(T ′=t|ξ′)
Pr(T=t|ξ)

=
Pr(ξ′|T ′=t) Pr(T ′=t)

Pr(T=t|ξ) Pr(ξ′)
(Using Bayes’ Theorem)

=
Pr(ξ|T=t) Pr(T ′=t)

Pr(T=t|ξ) Pr(ξ′)
(Using (3))

=
Pr(ξ|T=t) Pr(T ′=t)

Pr(T=t|ξ)
∑

t′∈T Pr(ξ′|T ′=t′) Pr(T ′=t′)

=
Pr(ξ|T=t) Pr(T ′=t)

Pr(T=t|ξ)
∑

t′∈T Pr(ξ|T=t′) Pr(T ′=t′).
(Using (3))

D ENFORCING COMPLEX FAIRNESS DEFINITIONS

In Section 3, we assume that the user-specified definition of unfair behavior, g, is defined by,

g(θ) := E
[
H

∣∣ ξ ]− τ. (10)

However common fairness definitions such as the 80% rule (Griggs v. Duke Power Co., 1971) and
equalized odds (Hardt et al., 2016) do not have the same form as (10). Nonetheless, these definitions
can often be described by known expressions of multiple terms, where each term is a conditional or
marginal expected value. Consider, for example, the definition of bias codified by disparate impact
(Griggs v. Duke Power Co., 1971; Chouldechova, 2017; Zafar et al., 2017):

gDI(θ) := 0.8−min

{
E[θ(X)|S=female]

E[θ(X)|S=male]
,

E[θ(X)|S=male]
E[θ(X)|S=female]

}
.

This definition is clearly not of the form described by (10); furthermore, it is challenging to estimate
because i.i.d. samples of E[θ(X)|S=male] and E[θ(X)|S=female] cannot be simultaneously
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computed given a single observation. Regardless, it is possible to compute valid high-confidence
upper bounds on gDI(θ) by leveraging the recursive bound-propagation described by Metevier et al.
(2019). Importantly, we evaluate our proposed algorithms using complex but realistic fairness
definitions by leveraging this strategy, and as a consequence, our results are influenced by this
decision.

While we refer the reader to Metevier et al. (2019) for a more complete discussion of this strategy,
we present a brief intuition here. First, we assume that the user’s definition of g can be written as,

g(θ) = f
(
ϕ1(θ), ..., ϕk(θ)

)
,

where each ϕi for i ∈ {1, ..., k} denotes a parameter of the joint distribution of (X,Y, S), and f is
some function of k arguments specified by the user. In our work, we assume that these parameters
are each expressed as a conditional expected value analogous to (10) and that the expression defining
f is provided by the user as text.

Following (Metevier et al., 2019), the expression for f is parsed into a tree structure representing the
recursive application of various predefined operations. To construct a high-confidence upper bound
on g(θ)—or in this work, g′(θ)—we first construct a set of confidence intervals on each parameter
using the methods described in Section 3. Importantly, we apply the union bound to ensure that the
set of confidence intervals on the parameters hold jointly with probability 1−δ. Next, these intervals
are recursively propagated through the expression for f , where at each node of the computation tree,
the interval for that node is computed by applying interval arithmetic, which describes the image of
certain mathematical operations given intervals as their arguments. Since the root of the computation
tree denotes the quantity g′(θ), the result of this recursive system is an interval containing the true
value of g′(θ) with at least probability 1−δ.

A drawback of this approach is that it assumes that the intervals describing each parameter are
independent, which is often false when considering demographic shift. While violation of this
assumption does not impact the validity of the resulting confidence interval on g′(θ), it causes them
to become larger than they would be if the dependence between each parameter were known. For
example, suppose g is defined to measure bias based on sex, and consider two races. If, for individuals
of one race, a certain sex is encountered much more often than other sexes, while for individuals of
the second race, all sexes are encountered equally often, then a demographic shift that makes the first
race more likely may cause certain parameters defining fairness to be highly correlated with others.
By ignoring these dependencies, the approach presented in (Metevier et al., 2019) may produce
significantly larger confidence intervals for g′(θ) compared to alternative approaches that leverage
this dependency. For this reason, we consider this problem to be a strong candidate for future work,
as it has the potential to improve the data efficiency of our methods as well as those proposed in
existing work (Metevier et al., 2019; Thomas et al., 2019).

E SIMULATING AND EVALUATING BOUNDED DEMOGRAPHIC SHIFT

Here, we describe our procedure for simulating the impact of demographic shift given a fixed
population dataset when the exact deployment distribution is unknown. Intuitively, after generating
a training dataset, we antagonistically select a new, non-uniform distribution over the population
that satisfies the user’s demographic shift assumptions—that is, that the marginal distribution over
demographics is contained in Q—but otherwise maximizes the prevalence of unfair behavior. Since
the population and sampling distributions are known during evaluation, this oracle knowledge can be
used to compute exact values for various statistics, such as expected classification accuracy and the
value of g′(θ) for all models θ.

To make this procedure formal, let the population dataset be denoted by Dpop:

Dpop := {(xi, yi, si, ti)}ni=1.

Note that we do not refer to this set using the standard notation for random variables because in
our experimental context the population is treated as a fixed, non-random population. To generate
a random training dataset, D, we sample observations uniformly from Dpop with replacement.
Specifically, if P denotes the uniform distribution over the observations in Dpop, then training
datasets are defined by D := {(Xj , Yj , Sj , Tj)}n0

j=1, where each (Xj , Yj , Sj , Tj) ∼ P .
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Next, we generate a new distribution over the population that satisfies the user’s assumptions but
otherwise maximizes the prevalence of unfair behavior for a given model, which we denote by Q.
However, to comply with the user’s assumptions about the demographic shift, Q must be selected
carefully. The following theorem provides the conditions that Q must satisfy to achieve this.

Theorem 2. Let P denote a uniform distribution over Dpop := {(xi, yi, si, ti)}ni=1. Assume that the
demographic attribute takes values in some set T and that each demographic t ∈ T occurs at least
once in the population. Next, let each q ∈ Q denote a marginal distribution over T , where qt denotes
the probability of encountering demographic t. Finally, let NDpop [x, y, s, t] denote the number of
observations in Dpop that are equal to (x, y, s, t) and let NDpop [t] denote the number of observations
that have demographic attribute equal to t. It follows that Q, defined below, is a distribution over
Dpop that satisfies both of the demographic shift assumptions, and has a marginal distribution over
demographics that is contained in Q:

Q(X=x, Y=y, S=s, T=t) =
NDpop

[x, y, s, t]

NDpop [t]
qt.

Proof. To show this result, we derive an expression for Q that has these properties by construction.

First, we expand the post-shift joint distribution using the laws of conditional probability:

Q(X=x, Y=y, S=s, T=t) = Q(X=x, Y=y, S=s|T=t)Q(T=t).

Next, we apply the second demographic shift assumption:

Q(X=x, Y=y, S=s, T=t) = P (X=x, Y=y, S=s|T=t)Q(T=t).

Then, we represent the conditional P (X,Y, S|T=t) as a ratio using laws of conditional probability:

Q(X=x, Y=y, S=s, T=t) =
P (X=x, Y=y, S=s, T=t)

P (T=t)
Q(T=t).

Because P is a uniform distribution overDpop, it follows that the value of P (X=x, Y=y, S=s, T=t)
is simply the number of occurrences of (x, y, s, t) in P divided by the total number of samples in
the population, n. Similarly, P (T=t) is equal to the number of observations that have demographic
attribute equal to t, divided by n. Since we assume that each demographic is observed in the
population, it follows that P (T=t) > 0 for all t ∈ T . Let NDpop [x, y, s, t] denote the number of
observations in Dpop that are equal to (x, y, s, t) and let NDpop

[t] denote the number of observations
that have demographic attribute equal to t. It follows that for all observations, (x, y, s, t) ∈ Dpop, we
have

Q(X=x, Y=y, S=s, T=t) =
NDpop

[x, y, s, t]

NDpop
[t]

Q(T=t).

Finally, we define the marginal distribution of Q over demographics to be given by q:

Q(X=x, Y=y, S=s, T=t) =
NDpop

[x, y, s, t]

NDpop [t]
qt.

Since Q has the same conditional distribution given the demographic as P by construction, it
satisfies the demographic shift assumptions. Furthermore, since the marginal distribution of Q over
demographics is defined to be given by q, which satisfies q ∈ Q, it also satisfies the user’s assumptions
about the demographic shift.

Theorem 2 shows that, given a q ∈ Q, it is straightforward to construct a distribution over the
population which satisfies the demographic shift assumptions. Therefore, to select a distribution that
maximizes the prevalence of unfair behavior for a given model, θ, we numerically optimize g′(θ)
over q ∈ Q using simplical homology optimization (Endres et al., 2018) to determine the maximizing
marginal distribution, q∗, and then define the final distribution over Dpop using Theorem 2.

Theorem 2 can also be used to compute exact values for various statistics of interest during evaluation,
such as expected classification accuracy or the value of g′(θ) for all models, θ. For example, consider
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estimating the post-deployment classification accuracy of a model, θ, given by EQ[I[θ(X)=Y ]]. If
D̄pop denotes the set of unique observations in Dpop, then we have

EQ

[
I[θ(X)=Y ]

]
=

∑
(x,y,s,t)∈D̄pop

I[θ(x)=y]Q(X=x, Y=y, S=s, T=t)

=
∑

(x,y,s,t)∈D̄pop

I[θ(x)=y]
NDpop [x,y,s,t]

NDpop [t]
Q(T=t).

Analogous expressions can be used to find exact values for post-shift model accuracy as well as the
value of g′(θ) for all models θ.

F ADDITIONAL RESULTS FOR BOUNDED DEMOGRAPHIC SHIFT

Results for our experiments on enforcing fairness under unknown demographic shift, according to
the principles of equal opportunity, equalized odds, and predictive equality, are shown in Figure 6.

Demographic Parity (Dwork et al., 2012; Calders and Verwer, 2010)

gDP(θ) :=
∣∣∣ E[θ(X)|S=female]− E[θ(X)|S=male]

∣∣∣− 0.1

Disparate Impact (Griggs v. Duke Power Co., 1971; Chouldechova, 2017; Zafar et al., 2017)

gDI(θ) := 0.8−min

{
E[θ(X)|S=female]

E[θ(X)|S=male]
,

E[θ(X)|S=male]
E[θ(X)|S=female]

}
Equal Opportunity (Hardt et al., 2016; Chouldechova, 2017)

gEOp(θ) :=
∣∣∣ E[θ(X)|Y=0, S=female]− E[θ(X)|Y=0, S=male]

∣∣∣− 0.1

Equalized Odds (Hardt et al., 2016)

gEOd(θ) :=
∣∣∣ E[θ(X)|Y=0, S=female]− E[θ(X)|Y=0, S=male]

∣∣∣ +∣∣∣ E[1−θ(X)|Y=1, S=female]− E[1−θ(X)|Y=1, S=male]
∣∣∣− 0.1

Predictive Equality (Chouldechova, 2017; Corbett-Davies et al., 2017)

gPE(θ) :=
∣∣∣ E[1−θ(X)|Y=1, S=female]− E[1−θ(X)|Y=1, S=male]

∣∣∣− 0.1

Figure 5: Definitions of fairness used in the additional experiments presented in this section. These
definitions were specified as text input and bounded with a recursive technique used by prior Seldonian
algorithms (Metevier et al., 2019).

G PRELIMINARY EXPERIMENTAL RESULTS: UCI ADULT DATASET, KNOWN
DEMOGRAPHIC SHIFT

In this section, we include preliminary experimental results that will be included in Section 4. In
these evaluations, we use the same experimental procedure as in Section 4.1 to simulate demographic
shift and measure the accuracy of each model, as well as the frequency with which each training
algorithm returns a model that violates fairness constraints.

These experiments were conducted using the UCI Adult data set, which includes various features,
including race and sex, describing 48, 842 individuals taken during a 1994 US census (Kohavi and
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(a) Equal Opportunity
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(b) Equalized Odds:
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(c) Predictive Equality:
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Figure 6: Results for experiments enforcing fairness constraints when the future marginal demo-
graphic distribution is unknown.

Becker, 1996). Given this dataset, we train classifiers to predict whether or not an individual earns
above $50,000 each year. To assess fairness under demographic shift, we define the fairness attribute,
S, to be the race of each individual, and define the demographic shift to be over T , the sex of each
individual. Specifically, we consider the subset of the UCI Adult dataset corresponding to black or
white individuals, and simulate a known demographic shift from the true population distribution in
which Pr(T=Female) = 0.32 during training while Pr(T ′=Female) = 0.25 during deployment.

We conducted trials using Shifty-ttest, two Seldonian algorithms, Fairness Constraints, and
Fairlearn. In addition, we also evaluate RFLearn, which is an algorithm for training classifiers
that promotes fair outcomes in the presence of covariate shift, but does not require data from the
deployment distribution (Du and Wu, 2021). Importantly, RFLearn is not designed to address
demographic shift, which has subtle differences from covariate shift as described in Appendix A, and
promotes fairness based on demographic parity. While other methods have been proposed to promote
fair outcomes under covariate shift, we were unable to compare to these approaches because they
either assume access to data drawn from the deployment distribution (Rezaei et al., 2021; Coston
et al., 2019), or they assume access to additional input such as causal graphs of the problem (Singh
et al., 2021) in our experiments, which are unavailable in our experiments.

Due to time constraints in generating these preliminary results, we conducted 10 trials for each
configuration, and trained each model using training sets with sizes ranging between 10,000 and
50,000 samples. Furthermore, we conducted our experiments using two definitions of fairness,
demographic parity and predictive equality. Specifically, we used the definitions as shown in Figure 5,
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(b) Demographic Parity:
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(b) Predictive Equality:
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Figure 7: Preliminary results when enforcing fairness constraints under unknown demographic shift
using the UCI Adult dataset.

with the exception that instead of defining S to be the sex of an individual, we defined S to be a
binary random variable representing whether or not the individual’s race was black or white.

Results for these experiments are shown in Figure 7. First, we found that in our experiments enforcing
demographic parity and those enforcing predictive equality, Shifty-ttest satisfied Property B,
as evidenced by the fact that the green curves in the rightmost plots of Figure 7 are never above
the dashed black line that denotes the δ = 0.05 tolerance. On the other hand, Fairlearn, Fairness
Constraints, and RFLearn all produced unfair models frequently, although in our experiments using
predictive equality, this happened only occasionally for Fairness Constraints. Interestingly, RFLearn,
despite being designed to promote fairness with respect to demographic parity under covariate shift,
consistently violated the demographic parity constraints set during our experiments both before and
after deployment. Upon closer inspection of the results for demographic parity, we found that, on
average, the value of g′(θ) for models trained using RFLearn was 0.0175, indicating that RFLearn
identified models that were only slightly more unfair than the required tolerance. This highlights the
observation that while many existing approaches to promoting fair ouctomes may find models that
are reasonably fair, they do not necessarily provide guarantees that the prevalence of unfair behavior
will meet specific tolerances with high confidence, as Shifty does.

Next, our results show that Shifty-ttest attained competitive accuracy compared to the best-
performing baseline algorithms (middle column plots in Figure 7), despite the small amount of training
data used in these evaluations compared to those in Section 4. Consequently, Shifty-ttest
suffered very little loss in accuracy in order to enforce fairness constraints that hold under demographic
shift for this experiment. Comparing these results to our results in Figure 3, this suggests that any
accuracy loss exhibited by Shifty-ttest is dependent on the data distribution being learned, and
may be negligible in some settings.

Finally, we note that, despite the small amount of training data used in these experiments,
Shifty-ttest was able to frequently avoid returning NO SOLUTION FOUND.
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ABSTRACT

We considered a fair representation learning perspective, where optimal predic-
tors, on top of the data representation, are ensured to be invariant with respect
to different subgroups. Specifically, we formulated the problem as a bi-level op-
timization, where the representation is learned in the outer-level, and invariant
optimal group predictors are updated in the inner-level. To avoid the high com-
putational and memory cost of differentiating in the inner-level optimization, we
proposed the implicit path alignment algorithm, which only relies on the solution
of inner optimization and the implicit differentiation rather than the exact opti-
mization path. Moreover, the proposed bi-level objective is demonstrated to fulfill
the sufficiency rule, which is desirable in various practical scenarios but was not
commonly studied in fair representation learning. We further analyzed the error
gap of the implicit approach and empirically validated the proposed method in
both classification and regression settings. Experimental results show the consis-
tently better trade-off in prediction performance and fairness measurement.

1 INTRODUCTION

Machine learning has been widely adopted in the real world decision-making practice such as job
candidate screening (Raghavan et al., 2020) and credit application. However, it has been observed
that learning algorithms treated some groups of population unfavorably, for example, denying credit
on the grounds of gender, age or ethnicity (Hardt et al., 2016). To this end, algorithmic fairness that
is to mitigate the prediction bias for different subgroups has recently received tremendous attentions.

With the rapid advancement of representation learning (LeCun et al., 2015), learning a fair embed-
ding (Zemel et al., 2013) has been recently highlighted. Specifically, the learned fair representation
can easily transfer the unbiased prior knowledge to the downstream tasks, with various successful
applications in computer vision (Kim et al., 2019; Kehrenberg et al., 2020), language understanding
(Chang et al., 2019; Ethayarajh, 2020) and artificial intelligence for health (Fletcher et al., 2021).
Typically, the fair representation learning is achieved by adding various statistical fair metrics during
the training process.

•
h(0) • h?0

• h?1

• h

−∇hL0(h, λ)

−∇hL0(h, λ)

Figure 1: Unfair representation leads to differ-
ent optimization path and non-invariant opti-
mal predictors on the latent space Z .

Based on this, most existing fair representation
approaches in classification or regression princi-
pally aim to meet the independence or separation
rule, e.g., (Madras et al., 2018; Song et al., 2019;
Chzhen et al., 2020). However, in various real-
world scenarios, the sufficiency rule is preferable.
For example, health systems rely on commercial
algorithms to identify and help patients with com-
plex health needs. The algorithm outputs a health-
care need score, where a higher score indicates
the patient is sicker and requires more healthcare.
Obermeyer et al. (2019) revealed that a widely
used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits
significant racial bias. At a given predicted healthcare need score Ŷ = t, Black patients are consid-
erably sicker than White patients (Eblack[Y |Ŷ = t] > Ewhite[Y |Ŷ = t]). Obermeyer et al. (2019)
also pointed out that remedying the disparity would increase the percentage of Black patients receiv-
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•
h(0) • h?0

• h?1

−
∑
t∇hL0(h(t), λ)

−
∑
t∇hL1(h(t), λ)

(a) Explicit Path

•
h(0) • h?0

•
h?1

(b) Implicit Path

Figure 2: Explicit and Implicit path alignment. (a) The considered fair representation learning
criteria lies in ensuring the invariant optimal predictor w.r.t. different subgroups on Z (h?0 = h?1).
Since the gradient based approach is adopted to optimize h, the explicit path alignment aims to learn
a representation λ to enforce the identical optimization path w.r.t. h. (b) The proposed implicit path
alignment only requires the last iteration point and approximate the gradient w.r.t. λ from the last
update of h (the brown arrow).

ing additional healthcare from 17.7 to 46.5%. Moreover, it has been theoretically justified (Barocas
et al., 2019) that the Sufficiency rule is generally not compatible with Independence and Separation.
Thus learning the fair representation w.r.t. the sufficiency rule is promising in both the algorithmic
design and real-world applications.

In this paper, we address the sufficiency rule by considering the following intuition: given a fixed
representation function, if the optimal predictor that learned on the embedding space are invariant
from different sub-groups, then the corresponding representation function is fair. Fig. 1 provides an
illustrative example. when the representation function λ : X → Z is unfair and we adopt gradient
descent to learn the predictor h : Z → R. The optimal predictors of different subgroups (blue, red)
are not invariant, resulting in biased predictions. We will later demonstrate such an intuition ensures
the learned representation satisfying the sufficiency rule (Liu et al., 2019; Chouldechova, 2017).

The aforementioned intuition can be naturally formulated as a bi-level optimization problem, where
we aim to adjust the representation λ (in the outer-level) to satisfy the invariant optimal predictor
h (in the inner-level). Thus, when we adopt the gradient-based approach in solving the bi-level
objective, a straightforward solution is to learn the representation λ to fulfill the identical explicit
gradient-descent directions in learning predictor h? of different groups, shown in Fig. 2(a). Intu-
itively, if the inner gradient descent step of each sub-group is identical, their final predictors (as
the approximation of h?) will be invariant. However, the corresponding algorithmic realization is
challenging in deep learning: 1) It requires storing the whole gradient steps, which induces a high
memory burden. 2) the embedding function λ is optimized via backpropagation from the whole
gradient optimization path, which induces a high computational complexity.

To this end, we propose an implicit path alignment, shown in Fig. 2(b). Notably, we only consider
the final (t-th) update of the predictor h(t), then we update representation function λ by approxi-
mating its gradient at point h(t) through the implicit function (Bengio, 2000). By using the gradient
approximation, it is no more required to store the whole gradient step and conduct the backpropaga-
tion through the entire path. Overall, the highlights in this paper are as follows:

Fair-representation learning to satisfy the sufficiency rule Instead of enforcing the independence
or separation rule, the considered fair-representation criteria is proved to satisfy the sufficiency rule
in both classification and regression. We also find such a criteria is intrinsically consistent with the
recent Invariant Risk Minimization (IRM) (Arjovsky et al., 2019; Bühlmann, 2020), which aims to
eliminate suspicious correlations while keeping robust correlations that are invariant across different
environments. Intuitively, reducing the correlation w.r.t. the protected attributes enables the fair
representation.

Principled and efficient algorithm We proposed a novel implicit path alignment algorithm to learn
the fair representation, which addressed the prohibitive memory and computational cost in the orig-
inal bi-level objective. Besides, we analyzed the approximation error gap of the proposed implicit
algorithm, which induces a trade-off between the correct gradient estimation and fairness measures.

Improved fairness in classification and regression We evaluated the implicit algorithm in both
classification and regression with tabular, computer vision and NLP datasets. Compared to the
baselines, the implicit algorithm effectively improved the fairness with a smaller sufficiency gap.
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2 PRELIMINARIES

We suppose the input X ∈ X , the ground truth label Y ∈ Y , and the algorithmic output Ŷ ∈
Y . Throughout the paper, we only consider binary sensitive attribute (i.e, two sub-groups) with
distributions D0 and D1. Then based on (Liu et al., 2019), the sufficiency rule is defined as:

ED0 [Y |Ŷ = t] = ED1 [Y |Ŷ = t], ∀t ∈ Y (1)
To measure the fairness w.r.t. the sufficiency rule, we propose the sufficiency gap as the metric.
Since we aim to evaluate the fairness in both binary classification (Y ∈ {−1, 1}) and regression
(Y ∈ R), the metric is separately defined on these two scenarios.

Sufficiency gap in binary classification Based on the sufficiency rule, the sufficiency gap in binary
classification is naturally defined as:

∆SufC =
∑

y∈{−1,1}

|D0(Y = y|Ŷ = y)−D1(Y = y|Ŷ = y)| (2)

∆SufC encourages the two subgroups with identical Positive predicted value (PPV) and Nega-
tive predicted value (NPV). On the practical side, considering the healthcare evaluation system
outputs either High Risk or Low Risk, Obermeyer et al. (2019) essentially revealed Dblack(Y =

High Risk|Ŷ = Low Risk) > Dwhite(Y = High Risk|Ŷ = Low Risk): the severity of Black pa-
tients is actually underestimated. Thus if ∆SufC is small, the racial discrimination can be remedied.

Sufficiency gap in regression Based on the sufficiency rule and (Kuleshov et al., 2018), the suffi-
ciency gap in regression is defined as:

∆SufR =

∫
t∈Y
|D0(Y ≤ t|Ŷ ≤ t)−D1(Y ≤ t|Ŷ ≤ t)|dt (3)

∆SufR ∈ [0, 1] is an approximation of |D0(Y = y|Ŷ = y)−D1(Y = y|Ŷ = y)|, ∀y ∈ R, since the
latter is difficult to estimate. From the practical aspect, assuming the health system outputs a real-
value healthcare score Ŷ = t (higher indicates sicker), Obermeyer et al. (2019); Sjoding et al. (2020)
observed Dblack(Y > t|Ŷ ≤ t) > Dwhite(Y > t|Ŷ ≤ t): for the patients whose predicted healthcare
score is less than t, the actual proportion of sicker (Y > t) in Black patients is considerably higher
than White patients. Therefore a small ∆SufR suggests an improved disparity.

3 PROBLEM SETUP

We denote the representation function λ that maps the input X into the latent variable Z, the predic-
tion function h such that h : Z → R for regression and h : Z → {−1, 1} for binary classification.
We then denote the prediction loss as `, the prediction loss on subgroup D0,D1 is expressed as:

L0(h, λ) = E(x,y)∼D0
`(h ◦ λ(x), y), L1(h, λ) = E(x,y)∼D1

`(h ◦ λ(x), y)

According to the intuition, we aim to solve the following bi-level objective:
min
λ
L0(h?0, λ) + L1(h?1, λ) (Outer level)

s.t. h?0 = h?1, h
?
0 ∈ argmin

h
L0(h, λ), h?1 ∈ argmin

h
L1(h, λ). (Inner level)

Specifically, in the outer level, we aim to find a representation λ for minimizing the prediction error,
given the optimal predictor (h?0, h

?
1) on the embedding space Z . As for the inner level, given a fixed

representation λ, h?0, h?1 are the optimal predictor for each sub-group. The constraints h?0 = h?1
additionally encourage the invariant optimal predictors from D0, D1.

Relation to the explicit path alignment In deep learning we adopt the gradient-based approach
to minimize the loss, therefore h? in the inner level is approximated as h(t+1), the t-th update in the
gradient descent: h?0 ≈ h(0)−

∑
t∇hL0(h(t), λ), h?1 ≈ h(0)−

∑
t∇hL1(h(t), λ), where h(0) is the

common initialization. Thus the invariant optimal predictor is equivalent to:∑
t

∇hL0(h(t), λ) =
∑
t

∇hL1(h(t), λ).

The aforementioned equation suggests learning a representation λ that ensures the identical opti-
mization path w.r.t. h for each sub-group, which recovers the explicit path alignment.

3
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Relation to the Sufficiency rule We further demonstrate the relation between the bi-level objec-
tive and Sufficiency rule.
Proposition 1. If we specify the prediction loss ` as logistic regression loss in the classification
log(1 + exp(−yh(z))) with Y = {−1, 1} and the square loss in the regression (h(z) − y)2 with
Y ⊂ R. Then minimizing the inner-level loss is equivalent to:

ED0
[Y |Z = z] = ED1

[Y |Z = z], ED0
[Y |Ŷ = h?(z)] = ED1

[Y |Ŷ = h?(z)],

where h? = h?0 = h?1 and z = λ(x).

Proposition 1 reveals that the objective of inner-level loss is to encourage the sufficiency rule.

4 PRACTICAL ALGORITHMS

In this section, we propose an implicit alignment in deep learning, where λ and h are implemented
by the neural network. We also reformulate as the original objective through Lagrangian relaxation:

min
λ
L0(h?0, λ) + L1(h?1, λ) +

κ

2
‖h?0 − h?1‖22 (Outer level)

s.t. h?0 ∈ argmin
h
L0(h, λ), h?1 ∈ argmin

h
L1(h, λ), (Inner level)

where κ > 0 is the coefficient to control the fairness. Then we will drive the approximated gradient
w.r.t. λ, which contains the following key elements.

Solving the inner optimization Given a fixed representation λ, we find hε0, hε1 such that:

‖h?0 − hε0‖ ≤ ε, ‖h?1 − hε1‖ ≤ ε,

where ε is the optimization tolerance. Besides, h?1 and hε1 are essentially the function of λ, i.e., hε1
depends on the predefined representation function λ.

Computing the gradient of λ Given the approximate solution hε0, hε1, we can compute the gradi-
ent w.r.t. λ (referred as ˜grad(λ)) 1 in the outer-level:

˜grad(λ) =∇λL0(hε0, λ) + (∇λhε0)
T

(∇h0L0(hε0, λ) + κ(hε0 − hε1))

+∇λL1(hε1, λ) + (∇λhε1)
T

(∇h1
L1(hε1, λ)− κ(hε0 − hε1)) .

Where ∇h0L0(hε0, λ) is the partial derivative in the loss w.r.t. the first term (about h0), evaluated at
hε0. Also ∇λL0(hε0, λ) is the partial derivative w.r.t. the second term (about λ).

Implicit function for approximating the gradient In order to compute ˜grad(λ) in autograd,
we need to estimate ∇λhε0 and ∇λhε1. We herein adopt the implicit function (Bengio, 2000) to
approximate ∇λhε0, which has been adopted in the hyperparameter optimization (Pedregosa, 2016)
and meta-learning (Rajeswaran et al., 2019).

Concretely, if the prediction loss is smooth and there exist stationary points to achieve optimal,
we have: ∇h0L0(h?0(λ), λ) = 0,∇h1L0(h?1(λ), λ) = 0. Then differentiating w.r.t. λ will induce:
d (∇h0

L0(h?0(λ), λ)) /dλ = ∇2
h0
L0(h?0, λ)∇λh?0+∇λ∇h0

L0(h?0, λ) = 0.2 Thus we have∇λh?0 =

−
(
∇2
h0
L0(h∗0, λ)

)−1
(∇λ∇h0

L0(h∗0, λ)), where the Hessian matrix∇2
h0
L0(h∗0, λ) is assumed to be

invertible.

Through the implicit function, we can approximate∇λhε0 as:

∇λhε0 ≈ −
(
∇2
h0
L0(hε0, λ)

)−1
(∇λ∇h0L0(hε0, λ))

As for∇λhε1, we have the similar result: ∇λhε1 ≈ −
(
∇2
h1
L1(hε1, λ)

)−1
(∇λ∇h1L1(hε1, λ)).

1We denote the ground truth gradient as grad(λ) if we adopt optimal predictor h?
0, h

?
1 in the computation.

2d(·)/dλ denotes the total derivative.
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Algorithm 1 Implicit Path Alignment Algorithm

Ensure: Representation function λ, predictor h0, h1, datasets from two sub-groups D0. D1.
1: for mini-batch of samples from (D0,D1) do
2: Solving the inner-level optimization with tolerance ε. Obtaining hε0, h

ε
1.

3: Solving Eq. (4) with tolerance δ. Obtaining pδ0 and pδ1.

4: Computing ˜grad
δ
(λ) (gradient of representation λ)

5: Updating λ through autograd: λ← λ− ˜grad
δ
(λ)

6: end for
7: return λ, hε0, hε1

Efficient and numerical stable gradient estimation Plugging in the approximations, the gradient
w.r.t λ is approximated as:

˜grad(λ) ≈ ∇λL0(hε0, λ)− (∇λ∇h0
L0(hε0, λ))

T (∇2
h0
L0(hε0, λ)

)−1
(∇h0

L0(hε0, λ) + κ(hε0 − hε1))︸ ︷︷ ︸
p0

+∇λL1(hε1, λ)− (∇λ∇h1
L1(hε1, λ))

T (∇2
h1
L1(hε1, λ)

)−1
(∇h1

L1(hε1, λ)− κ(hε0 − hε1))︸ ︷︷ ︸
p1

However, the current form is still computationally expensive due to the computation of inverse
Hessian matrix. To this end, we denote p0 and p1 as the inverse-Hessian vector product. Then
computing p0 and p1 is equivalent to solve the following quadratic programming (QP):

argminp̂0

1

2
p̂T0
(
∇2
h0
L0(hε0, λ)

)
p̂0 − p̂T0 (∇h0

L0(hε0, λ) + κ(hε0 − hε1))

argminp̂1

1

2
p̂T1
(
∇2
h1
L1(hε1, λ)

)
p̂1 − p̂T1 (∇h1L1(hε1, λ)− κ(hε0 − hε1)) (4)

Since it is a typical QP problem and we adopt conjugate gradient method (Concus et al., 1985;
Rajeswaran et al., 2019), which can be updated efficiently through autograd via computing the
Hessian-vector product. We additionally suppose the optimization error in the QP as δ, i.e.: ‖p0 −
pδ0‖ ≤ δ, ‖p1 − pδ1‖ ≤ δ, then the gradient w.r.t representation λ can be finally expressed as:

˜grad
δ
(λ) = ∇λL0(hε0, λ)− (∇λ∇h0

L0(hε0, λ))
T
pδ0 +∇λL1(hε1, λ)− (∇λ∇h1

L1(hε1, λ))
T
pδ1

The ˜grad
δ
(λ) can be also efficiently estimated through Hessian vector product via autograd with-

out explicitly computing the Hessian matrix.

Proposed algorithm Based on the key elements, the proposed algorithm is shown in Algo. 1.

4.1 THE COST OF IMPLICIT ALGORITHM: APPROXIMATION-FAIR TRADE-OFF

Theorem 1 (Approximation Error Gap). Suppose that (1) Smooth Predictive Loss. The first-order
derivatives and second-order derivatives of L are Lipschitz continuous; (2) Non-singular Hessian
matrix. We assume ∇h0,h0L0(h0, λ),∇h1,h1L1(h1, λ), the Hessian matrix of the inner optimiza-
tion problem, are invertible. (3) Bounded representation and predictor function. We assume the λ
and h are bounded, i.e., ‖λ‖, ‖h‖ are upper bounded by the predefined positive constants. Then
the approximation error between the ground truth and algorithmic estimated gradient w.r.t. the
representation is be upper bounded by:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ).

The proof is delegated in Appendix B. We also discuss the assumptions to guarantee the convergence
of Algorithm 1, shown in Appendix C.

Theorem 1 reveals that the gradient approximation error depends on the two-level optimization
tolerance ε, δ and the coefficient of fair constraints κ. Specifically, the error gap reveals the inherent
trade-off in accurate gradient estimation and fair-representation learning. If we fix the optimization
tolerance ε and δ, a smaller κ indicates a better approximation of the gradient, which yields weak
fair constraints. Thus the implicit alignment introduces a trade-off in the prediction performance
(i.e., correct approximation of the gradient) and fairness measurement.
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5 RELATED WORK

Fair Machine Learning Below we only list the most related work in the fairness and refer to the
survey paper (Mehrabi et al., 2021) for details in the algorithmic fairness. In the classification, var-
ious methods in learning fair representations have been proposed. Specifically, a common strategy
is to introduce the statistical constraints as the regularization during the training, e.g., demographic
parity (DP) (Zhang et al., 2018; Madras et al., 2018; Song et al., 2019; Jiang et al., 2020; Kehrenberg
et al., 2020) or equalized odds (EO) (Song et al., 2019; Gupta et al., 2021) as the proxy of the sepa-
ration and independence rule. Another direction is to disentangle the data for factorizing meaningful
representations such as (Locatello et al., 2019). Intuitively, the disentangled embedding is indepen-
dent of the sensitive attribution, thus reflecting a fair representation w.r.t. the independence rule,
which can be potentially problematic when the label distributions of subgroups vary dramatically
(Zhao et al., 2019).

Fairness has also been extended to the fields beyond classification. For instance, in the regression
problem (Komiyama et al., 2018; Agarwal et al., 2019), the bounded group loss has been proposed
as the fair measure: if prediction loss in each subgroup is smaller than ε, the regression is ε-level
fair. In fact, the fair criteria in our paper is not equivalent to ε-fair. Given a fixed λ, the ε-level fair
does not guarantee the optimal and invariant predictor for each subgroup and vice versa.

The sufficiency rule has also been discussed in the previous work. Notably, Chouldechova (2017);
Liu et al. (2019) proposed the sufficiency gap in classification for measuring fairness w.r.t. the
sufficiency rule. Liu et al. (2019) also discussed the inequivalence between the sufficiency gap and
probabilistic calibration (Guo et al., 2017) (referred as calibration gap). According to Pleiss et al.
(2017), the calibration rule is a stronger condition than sufficiency rule while it simultaneously hurts
the prediction performance. Throughout this paper, we only consider the sufficiency rule. The triple
trade-off between the calibration rule, sufficiency rule, and prediction performance will be left as
future work.

Invariant Risk Minimization The analyzed fair-representation criteria shares a quite similar spirit
to the IRM (Arjovsky et al., 2019; Bühlmann, 2020; Creager et al., 2021), where an algorithm
IRM v1 is proposed to enable the out-of-distribution (OOD) generalization. The key difference be-
tween our work and (Arjovsky et al., 2019) lies in the algorithmic aspect: it has been theoretically
justified that the originally proposed IRM v1 does not necessarily capture the invariance (Rosenfeld
et al., 2020). By contrast, we directly solve the bi-level objective in the context of deep-learning
and propose an efficient practical algorithm with better empirical performance than IRM v1. Be-
sides, based on Chen et al. (2021), the proposed algorithm does not provably guarantee the OOD
generalization property due to the limited subgroups (N = 2) considered within the paper.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP
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Figure 3: Sufficiency gap (∆SufR) in
regression

In the paper, we adopt the sufficiency gap as fair metrics,
where Ŷ is denoted as:

Ŷ =

{
hε0 ◦ λ(X), X ∈ D0

hε1 ◦ λ(X), X ∈ D1

Then in the binary classification, we can estimate ∆SufC =∑
y∈{−1,+1} |D0(Y = y|Ŷ = y) − D1(Y = y|Ŷ = y)|

from the data.

As for regression, the sufficiency gap ∆SufR =∫
t
|D0(Y ≤ t|Ŷ ≤ t) − D1(Y ≤ t|Ŷ ≤ t)| (shown

in Fig. 3, the orange region) is difficult to estimate due
to the integration. To address this, we sample multi-
ple values {t1, . . . , tm} and compute its average differ-
ence as the approximation of the integration. ∆SufR ≈
1
m

∑m
i=1 |D0(Y ≤ ti|Ŷ ≤ ti)−D1(Y ≤ ti|Ŷ ≤ ti)|
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Method Accuracy (↑) ∆SufC (↓)
ERM (I) 0.768 ± 0.004 0.173 ± 0.008

Adv debias (II) 0.760 ± 0.008 0.291 ± 0.006
Mixup (III) 0.758 ± 0.003 0.343 ± 0.022

IRM v1 (IV) 0.753 ± 0.004 0.057 ± 0.015
One step (V) 0.755 ± 0.007 0.048 ± 0.008

Implicit 0.760 ± 0.007 0.051 ± 0.012

Table 1: Toxic comments dataset. Accuracy and
∆SufC in different approaches.
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Figure 4: Toxic. Accuracy-Fair Trade-off

Concretely, for a given ti in each group, we compute the percentile (Ŷ0) at point t: D0(Ŷ0 ≤ ti),
then we compute the corresponding ground truth cumulative distribution (Y ) at the same point ti:
D(Y ≤ ti|Ŷ ≤ ti). Through the aforementioned approximation, we can compute |D0(Y ≤ ti|Ŷ ≤
ti)−D1(Y ≤ ti|Ŷ ≤ ti)|.

Baselines We consider the baselines that add fairness constraints during the training process.
Specifically, we compare our method with (I) empirical risk minimization (ERM) that trains the
model without considering fairness; (II) adversarial debiasing (Zhang et al., 2018); (III) fair mix-up
(Chuang & Mroueh, 2021), a recent data-augmentation and effective approach in the fair represen-
tation learning. In fact, the baselines (II) and (III) are DP-based fair approaches, which is designed
to demonstrate the general non-compatibility in addressing the sufficiency based fairness.

Besides, we include two additional baselines that have the similar objective but different algorithmic
realizations. (IV) the original IRM regularization (referred as IRM v1) (Arjovsky et al., 2019),
which adds a gradient penalty to encourage the invariance. (V) One-step explicit alignment. In the
inner-level optimization, we suppose to conduct the one-step gradient descent for each sub-group.
Then in the outer-level optimization, we add a gradient-incoherence constraint to encourage the
identical (one-step) optimization path: minλ ‖∇h0L0(h0, λ) − ∇h1L1(h1, λ)‖22. All the results
are reported by averaging five repetitions and additional experimental details are delegated in the
Appendix.

6.2 EMPIRICAL RESULTS

6.2.1 TOXIC COMMENTS

The toxic comments dataset (Jigsaw, 2018) is a binary classification task in NLP to predict whether
comment is toxic or not. The original label is actually not binary since the comments is decided
by multiple annotators, where the labelling discrepancy generally occurs. To this end, we conduct
a simple strategy to decide comment is toxic if at least one annotator marks it. In this dataset, a
portion of comments have been labeled with identity attributes, including gender and race. It has
also been revealed that the race identity (e.g., black) is correlated with the toxicity label, which can
lead to the predictive discrimination. Thus we adopted the race as the protected group by selecting
two subgroups of Black and Asian. For the sake of computational simplicity, we first applied the
pretrained BERT (Devlin et al., 2018) to extract the word embedding with 748 dimensional vector.
Then we adopt representation function λ as two fully-connected layers with hidden dimension 200
with Relu activation and classifier h as a linear predictor. We report the test-set sub-group average
accuracy and sufficiency gap (∆SufC) in Tab. 1 and Fig. 4.

The results reveal several interesting facts. (1) The Demographic Parity (DP) based fair constraints
are generally non-compatible with the sufficiency rule. Specifically, baseline (II,III) even increase
∆SufC with higher value than ERM. (2) For the baselines that track the sufficiency rule (IV,V),
the sufficiency gap ∆SufC is improved with a similar accuracy, shown in Tab.1. We also change
the regularization coefficient in (IV,V) and κ in the implicit approach. We observe that the implicit
approach demonstrates a consistent better Accuracy-Fair trade-off, shown in Fig. 4.
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Method Accuracy (↑) ∆SufC (↓)
ERM (I) 0.780 ± 0.015 0.210 ± 0.022

Adv debias (II) 0.785 ± 0.022 0.165 ± 0.028
Mixup (III) 0.792 ± 0.011 0.160 ± 0.010

IRM v1 (IV) 0.795 ± 0.012 0.086 ± 0.015
One step (V) 0.797 ± 0.006 0.086 ± 0.012

Implicit 0.794 ± 0.027 0.074 ± 0.020

Table 2: CelebA dataset. Accuracy and predictive
parity in different approaches.
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Figure 5: CelebA. Accuracy-Fair Trade-off

6.2.2 CELEBA DATASET

The CelebA dataset (Liu et al., 2015) contains around 200K images of celebrity faces, where each
image is associated with 40 human-annotated binary attributes including gender, hair color, young,
etc. In this paper, we designate gender as the sensitive attribute, and attractive as the binary clas-
sification task. We randomly select around 82K and 18K images as the training and validation set.
Then we adopt representation function λ as pre-trained ResNet-18 (He et al., 2016) and classifier
h as two-fully connected layers. We report the test-set sub-group average accuracy and sufficiency
gap (∆SufC) in Tab. 2 and Fig. 5.

The results in the CelebA show similar behaviors with the Toxic comments. Specifically, the DP
based fair approaches (II, III) did not effectively improve ∆SufC , shown in Tab. 2. In contrast, the
sufficiency can be significantly improved in baselines (IV, V) and implicit approach without largely
losing the accuracy. Specifically, Fig. 5 visualizes the accuracy-fair trade-off curve, where the later
three approaches show quite similar behaviors.

6.2.3 LAW DATASET

The Law Dataset is a regression task to predict a students GPA (real value, ranging from [0, 4]),
where the data is utilized from the School Admissions Councils National Longitudinal Bar Passage
Study (Wightman, 1998) with 20K examples. In the regression task, we adopt the square loss and
race as the protected attribute (white versus non-white). We adopt λ as the one fully connected
layer with hidden dimension 100 and Relu activation and predictor h as a linear predictor. We report
the test-set subgroup average MSE (Mean Square Error) and sufficiency gap (∆SufR) in Tab. 1 and
Fig. 4.

Compared to the classification task, the results show similar behaviors in the regression. Specifically,
the DP based fair approaches (II, III) still increase ∆SufR in the regression. In contrast, the gap is
significantly improved in our proposed approach and baseline (IV,V). Specifically, Fig. 7 visualizes
the sufficiency-gap of different approaches, where the implicit approach significantly mitigate the
sufficiency gap. Besides, Fig. 6 shows the MSE-sufficiency gap curve, which still reveals the implicit
approach benefits a better trade-off between the performance and fairness.

Method MSE (↓) ∆SufR (↓)
ERM (I) 0.190 ± 0.005 0.160 ± 0.007

Adv debias (II) 0.223 ± 0.008 0.188 ± 0.012
Mixup (III) 0.216 ± 0.012 0.172 ± 0.007

IRM v1 (IV) 0.208 ± 0.006 0.096 ± 0.006
One step (V) 0.204 ± 0.007 0.125 ± 0.010

Implicit 0.198 ± 0.005 0.091 ± 0.011

Table 3: Law dataset. MSE and sufficiency gap in
different approaches.
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Figure 6: Law. MSE-Fair Trade-off
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(a) ERM
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(b) Fair Mix-up
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(c) Implicit

Figure 7: Illustration of the sufficiency gap (∆SufR) in Law dataset (regression). The ERM and Fair
mix-up suffer a high ∆SufR, while the proposed implicit alignment can significantly mitigate the
sufficiency gap.

Method MSE (↓) ∆SufR (↓)
ERM (I) 1.939 ± 0.021 0.246 ± 0.019

Adv debias (II) 1.982 ± 0.016 0.252 ± 0.020
Mixup (III) 1.979 ± 0.025 0.246 ± 0.023

IRM v1 (IV) 1.927 ± 0.031 0.077 ± 0.009
One step (V) 1.904 ± 0.027 0.090 ± 0.019

Implicit 1.906 ± 0.019 0.051 ± 0.005

Table 4: NLSY dataset. MSE and sufficiency gap
in different approaches.
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Figure 8: NLSY. MSE-Fair Trade-off

6.2.4 NLSY DATASET

The National Longitudinal Survey of Youth (NLSY, 2021) dataset is a regression task with around
7K dataset, which involves the survey results of the U.S. Bureau of Labor Statistics. It is intended to
gather information on the labor market activities and other life events of several groups for predicting
the income y of each person. We treat the gender as the sensitive attribute. We also normalize the
output y by diving the 10, 000, then the final output y ranges around [0, 8]. The prediction loss
is also the square loss. We adopt representation λ as the two fully connected layers with hidden
dimension 200 and Relu activation and predictor h as a linear predictor. We report the test-set
sub-group average MSE (Mean Square Error) and Sufficiency Gap (∆SufR) in Tab. 4 and Fig. 8.

Tab. 4 provides similar trends with other datasets. Baselines (IV,V) and implicit approach effective
control the sufficiency gap, while the DP based approach generally fails to improve the gap. Fig. 8
reveals a slightly better approximation-fair trade off for the implicit approach. Finally, Fig. 11 (in
Appendix) visualizes the sufficiency gap of different algorithms. The gap is actually significantly
improved while the calibration gap still exists, which is consistent with (Liu et al., 2019). Therefore
it can be quite interesting and promising to analyze the triple trade-off between the sufficiency gap,
calibration gap and prediction performance in the regression.

7 CONCLUSION

We considered the fair representation learning from a novel perspective through encouraging the
invariant optimal predictors on the top of data representation. Then we formulated this problem as a
bi-level optimization and proposed an implicit alignment algorithm. We further demonstrated the bi-
level objective is to fulfil the sufficiency rule. Besides, we also analyzed the error gap of the implicit
algorithm. The empirical results in both classification and regression settings suggest the improved
fairness measurement. Finally, we think the future work can include developing computationally
efficient explicit algorithms for avoiding the biased gradient computation.

9
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ETHICS STATEMENT

This paper proposed a novel fair representation algorithm, which aims to address the potential pre-
diction discrimination towards several subgroups. The proposed approach may also introduce the
potential negative impact: we merely address the fairness with respect to the sufficiency rule in the
paper, which is not always the preferable criteria in several specific scenarios.

REPRODUCIBILITY STATEMENT

We provided a demo source code in the supplementary material for a better understanding the pro-
posed algorithm. Besides, the detailed experimental descriptions and theoretical proofs are also
provided in the appendix.
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A PROPOSITION 1

We consider the regression and classification separately.

Regression According to the definition, given a fixed and deterministic representation λ, we have

L0(h, λ) = ED0(h(z)− y)2

It is noted as a typical regression problem with square error. We set the derivative as zero:
∇hL0(h, λ) = 0, we have h?0(z) = ED0 [Y |Z = z]. As for D1, we apply the same strategy
with h?1(z) = ED1 [Y |Z = z]. Based on the invariant optimal predictor, we have ED0 [Y |Z = z] =
ED1

[Y |Z = z] with z = λ(x).

Classification According to the definition, we have:

L0(h, λ) = ED0
log(1 + exp(−yh(z)))

Since the optimal predictor on the logistic loss is the log-conditional density ratio: h?0(z) =

log
(
D0(Y=1|Z=z)
D0(Y=−1|Z=z)

)
. Observe that in the binary classification with Y = {−1, 1}, we have

D0(Y = 1|Z = z) = 1
2 (1 + ED0

[Y |Z = z]) and D0(Y = −1|Z = z) = 1
2 (1 − ED0

[Y |Z = z]),
then we have:

h?0(z) = log

(
1 + ED0

[Y |Z = z]

1− ED0 [Y |Z = z]

)
As for D1, we adopt the same strategy and we have log

(
1+ED0

[Y |Z=z]

1−ED0
[Y |Z=z]

)
= log

(
1+ED1

[Y |Z=z]

1−ED1
[Y |Z=z]

)
,

then we have ED0 [Y |Z = z] = ED1 [Y |Z = z].

As for the predictive parity, since we have ED0
[Y |Z = z] = ED1

[Y |Z = z] and h? = h?1 = h?2,
then we have ED0

[Y |h?(z)] = ED1
[Y |h?(z)].

B APPROXIMATION ERROR

Theorem 2 (Approximation Error Gap). Suppose that (1) Smooth Predictive Loss. The first-order
derivatives and second-order derivatives of L are Lipschitz continuous; (2) Non-singular Hessian
matrix. We assume∇h0,h0

L0(h0, λ),∇h1,h1
L1(h1, λ), the Hessian matrix of the inner optimization

problem, are invertible. (3) Bounded representation and predictor function. We assume the λ
and h are bounded, i.e., ‖λ‖, ‖h‖ are upper bounded by the predefined positive constants. Then
the approximation error between the ground truth and algorithmic estimated gradient w.r.t. the
representation is be upper bounded by:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ).

Proof. We denote grad(λ) as the ground truth gradient w.r.t. λ in outer-level loss (given the optimal
predictor h?0, h?1). Then we aim to bound

‖grad(λ)− ˜grad
δ
(λ)‖

We first introduce the following terms for facilitating the proof:

Aε0 = ∇h0
∇λL0(hε0, λ), Aε1 = ∇λ∇h1

L1(hε1, λ), A?0 = ∇λ∇h0
L0(h?0, λ), A?1 = ∇λ∇h1

L1(h?1, λ),

Bε0 = ∇λL0(hε0, λ), Bε1 = ∇λL1(hε1, λ), B?0 = ∇λL0(h?0, λ), B?1 = ∇λL1(h?1, λ),

p?0 =
(
∇2
h0
L0(h?0, λ)

)−1
(∇h0

L0(h?0, λ) + κ(h?0 − h?1)) ,

p?1 =
(
∇2
h1
L1(h?1, λ)

)−1
(∇h1

L1(h?1, λ)− κ(h?0 − h?1)) .

Then the approximation error gap can be expressed as:

‖grad(λ)− ˜grad
δ
(λ)‖ = ‖ (B?0 −A?0p?0 +B?1 −A?1p?1)−

(
Bε0 −Aε0pδ0 +Bε1 −Aε1pδ1

)
‖

≤
1∑
i=0

‖B?i −Bεi ‖+

1∑
i=0

‖A?ip?i −Aδipδi ‖
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Due to the symmetric of D0 and D1, we only focus on the term on i = 0, the the upper bound in
i = 1 can be derived analogously.

As for bounding ‖B?0 −Bε0‖, since we assume first order derivative of the loss is Lipschitz functions
(with constant L1), then we have :

‖B?0 −Bε0‖ ≤ L1‖h?0 − hε0‖ ≤ εL1

Then the second term can be upper bounded by three terms:

‖A?0p?0 −Aδ0pδ0‖ ≤ ‖A?0p?0 −A?0p0‖︸ ︷︷ ︸
(1)

+ ‖A?0p0 −Aε0p0‖︸ ︷︷ ︸
(2)

+ ‖Aε0p0 −Aε0pδ0‖︸ ︷︷ ︸
(3)

Before estimating the upper bound, we first demonstrate ‖Aε0‖ and ‖A?0‖ are also bounded.

Since we assume λ and h are bounded (assuming the bounded constant as η and φ), the second order
derivative are Lipschitz (with constant L2). Then we consider another fixed point (λ′, h?0(λ′)) with
bounded second order derivative: A0 = ∇2

h0,λ
L0(h?0(λ′), λ′) and ‖A0‖ ≤ A. We have:

‖A?0 −A0‖2 ≤ L2‖[h?0(λ), λ]− [h?0(λ′), λ′]‖2 ≤ L2

√
η2 + φ2

Thus we have ‖A?0‖ ≤ A + L2

√
η2 + φ2 = A?sup. As for the second derivative at point hε0, it can

be upper bounded analogously with a similar constant Aεsup.

The upper bound of term (1) We have:

‖A?0p?0 −A?0p0‖ ≤ ‖A?0‖‖p?0 − p0‖

We have proved ‖A?0‖ is upper bounded by A?sup. We additionally introduce the following auxiliary
terms:

P ?0 =
(
∇2
h0
L0(h?0, λ)

)−1
, P ε0 =

(
∇2
h1
L1(h?1, λ)

)−1
.

b?0 = ∇h0
L0(h?0, λ) + κ(h?0 − h?1), bε0 = ∇h0

L0(hε0, λ) + κ(hε0 − hε1)

Then we have:

‖p?0 − p0‖ = ‖P ?0 b?0 − P ε0bε0‖
≤ ‖P ?0 b?0 − P ?0 bε0‖+ ‖P ?0 bε0 − P ε0bε0‖
≤ ‖P ?0 ‖‖b?0 − bε0‖+ ‖bε0‖‖P ?0 − P ε0‖

As for the ‖P ?0 ‖, since we assume the Hessian matrix is invertible thus its norm is upper bounded
by some constant (denoted as A−1). As for ‖b?0 − bε0‖, we have:

‖b?0 − bε0‖ ≤ ‖∇h0
L0(h?0, λ)−∇h0

L0(hε0, λ)‖+ 2κε

≤ εL1 + 2κε

Thus we have ‖P ?0 ‖‖b?0 − bε0‖ ≤ A−1(εL1 + 2κε).

As for ‖bε0‖, we can easily verify that it is indeed bounded by some constant b. For the first term,
we can adopt the same strategy in proving bounded ‖A?0‖. As for the second term in bε0, it is upper
bounded by 2κφ, due to the bounded predictor.

We now demonstrate ‖P ?0 − P ε0‖. Denoting ∆ = (P ?0 )−1 − (P ε0 )−1, then according to the second
order Lipschitz assumption, we have: ‖∆‖ ≤ εL2. Plugging in the result, we have:

‖P ?0 − P ε0‖ = ‖(P ?0 )∆(P ε0 )‖ ≤ ‖P ?0 ‖‖∆‖‖P ε0‖ ≤ (A−1)2L2ε

We still adopt the assumption that the bounded Hessian-inverse matrix by A−1.

Plugging in all the results, we have:

(1) ≤ A1(εL1 + 2κε) + b(A1)2L2ε := O(κε+ ε)
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The upper bound of term (2) We have:

‖A?0p0 −Aε0p0‖ ≤ ‖p0‖2‖A?0 −Aε0‖

Since we assume the loss is second-order Lipschitz, thus we have

‖A?0 −Aε0‖ = ‖∇λ∇h0L0(h?0, λ)−∇λ∇h0L0(hε0, λ)‖ ≤ L2‖h?0 − hε0‖ ≤ εL2

We can also demonstrate ‖p0‖ is bounded. According to the definition we have:

‖p0‖ ≤ ‖
(
∇2
h0
L0(hε0, λ)

)−1 ‖‖ (∇h0
L0(hε0, λ) + κ(hε0 − hε1)) ‖

(i)

≤ A−1(L1‖h?0 − hε0‖2 + 2κφ)

(ii)

≤ A−1(εL1 + 2κφ)

For (i), we assume: 1) the Hessian matrix is invertible thus its norm is surely upper bounded by
some constant (denoted as A−1), 2) the first-order derivative is Lipschitz (bounded by L1), 3) the
predictor h is bounded. For (ii), we adopt the definition of hε0.

Therefore, the upper bound for Term (2) is formulated as:

(2) ≤ εL2A−1(εL1 + 2κφ) := O(κε)

The upper bound of term (3) We have:

‖Aε0p0 −Aε0pδ0‖ ≤ ‖Aε0‖‖p0 − pδ0‖ ≤ δAεsup = O(δ)

Through the upper bound in (1)-(3), we finally have the error between the estimated and ground-truth
gradient:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ)

C THE CONVERGENCE BEHAVIOR

For the sake of completeness, we provide the convergence analysis of the proposed algorithm.
Proposition 2. We execute the implicit alignment algorithm (Algo. 1), obtaining a sequence of
λ1, . . . , λk, . . . . Supposing the fair constraint κ is fixed. The optimization tolerances are summable:∑
k ε

2
k ≤ +∞ and

∑
k δ

2
k ≤ +∞, then λk is proved to be converged with

lim
k→∞

λk = λ?.

If the stationary point λ? is also within the bounded norm, then we have:

grad(λ?) = 0.

Proof. We denote the entire outer-level loss w.r.t. λ as L(λ), by the assumption the β-smooth loss
L. Then at iteration k + 1 and k, we have:

L(λk+1) ≤ L(λk)− grad(λk)T (λk − λk+1) +
β

2
‖λk+1 − λk‖2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk) + ˜grad

δ
(λk)

)T
(λk − λk+1) +

β

2
‖λk+1 − λk‖2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T
(λk − λk+1)− ˜grad

δ
(λk)(λk − λk+1) +

β

2
‖λk+1 − λk‖2

Since we assume the representation is within the bounded norm, the projection onto the convex
set are non-expansive operators (Boyd et al., 2004). Then for any point p, q, we have ‖proj(p) −
proj(q)‖2 ≤ (p− q)T (proj(p)− proj(q)). Then we set λk and λk+1 = λk − 1

β
˜grad

δ
(λk), we have:

‖λk − λk+1‖2 ≤
1

β
( ˜grad

δ
(λk))T (λk − λk+1)
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Plugging into the results, we have:

L(λk+1) ≤ L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T
(λk − λk+1)− β

2
‖λk+1 − λk‖2

≤ L(λk) + ‖grad(λk)− ˜grad
δ
(λk)‖‖λk − λk+1‖ −

β

2
‖λk+1 − λk‖2

Rearranging the inequality, we have:
β

2
‖λk+1 − λk‖2 − ‖grad(λk)− ˜grad

δ
(λk)‖‖λk − λk+1‖+ (L(λk+1)− L(λk)) ≤ 0

Then we have:

‖λk+1 − λk‖ ≤
1

β

(
‖grad(λk)− ˜grad

δ
(λk)‖+

√
‖grad(λk)− ˜grad

δ
(λk)‖2 − 2β (L(λk+1)− L(λk))

)
By denoting Bk = ‖grad(λk)− ˜grad

δ
(λk)‖ and Ck = L(λk+1)− L(λk). Then we have:

‖λk+1 − λk‖2 ≤
1

β2

(
B2
k +B2

k − 2βCk + 2Bk

√
B2
k − 2βCk

)
≤ 1

β2

(
B2
k +B2

k − 2βCk +B2
k +B2

k − 2βCk
)

=
4

β2
[‖grad(λk)− ˜grad

δ
(λk)‖22 − 2β (L(λk+1)− L(λk))]

Taking sum over k, we have:
+∞∑
k=1

‖λk+1 − λk‖2 ≤
4

β2

+∞∑
k=1

‖grad(λk)− ˜grad
δ
(λk)‖22 −

8

β
( lim
k→∞

L(λk+1)− L(λ1))

≤ 4

β2

∑
k

[(C + κ)2ε2k + δ2k]− 8

β

(
lim
k→∞

L(λk+1)− L(λ1)

)
< +∞

Since 1) the first term on the right side is finite, because the optimization tolerance is summable; 2)
the second term is also finite, because the loss is assumed to be bounded. Then the upper bound is
finite. In order to satisfy this condition, on the left side we should have:

lim
k→∞

λk+1 − λk = 0

By adopting the definition λk+1 = Proj(λk − ˜grad
δ
(λk)) and limk→∞ ˜grad

δ
(λk) = grad(λk)

(Based on theorem 1, the limit of the optimization tolerance is zero), then we have:
λ? = proj(λ? − grad(λ?))

Where λ? = limk→+∞ λk+1 = limk→+∞ λk. Since the projection is on the bounded norm Lnorm
and λ? is within the bounded norm space, thus if λ? − grad(λ?) is within the bounded norm space,
we have:

grad(λ?) = 0

Else if λ? − grad(λ?) is outside the bounded norm space, then according to the definition, the pro-
jection of λ?−grad(λ?) is surely on the boundary of the Lnorm space, with ‖proj(λ?−grad(λ?))‖ =
Lnorm. However, we have assumed the λ? is within the bounded norm space with ‖λ?‖ < Lnorm,
which leads to the contradiction. Based on these discussions, we finally have:

grad(λ?) = 0

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 ADDITIONAL DETAILS

Toxic Comments We split the training, validation and testing set as 70%, 10% and 20%. We
adopt Adam optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each
subgroup and we use sampling with replacement to run the explicit algorithm with maximum epoch
100. The fair coefficient is generally set as κ = 0.1 ∼ 0.001. As for the inner-optimization step, the
iteration number is 20 and the iteration in running conjugate gradient approach is 10.
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CelebA The training/validation/test set are around 82K, 18K and 18K. We also adopt the Adam
optimizer with learning rate on λ : 10−5 ∼ 10−4 and h : 10−3. The batch-size is set as 64 for each
subgroup and we iterate the whole dataset as one epoch. The maximum running epoch is set as 20
and the iteration in running conjugate gradient approach is 10.

Law We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt Adam
optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each subgroup and
we use sampling with replacement to run the implicit algorithm, with the maximum epoch 100. We
adopt the MSE loss in the regression. The fair coefficient is generally set as κ = 0.1 ∼ 10−4. As
for the inner-optimization, the iteration number is 20 and the iteration in running conjugate gradient
is 10. In computing the sufficiency gap in the regression, we sample 33 points to compute the gap.

NLSY We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt
Adam optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each
subgroup and we use sampling with replacement to run the implicit algorithm, with maximum
epoch 100. We adopt the MSE loss in the regression. The fair coefficient is generally set as
κ = 0.1 ∼ 10−4. As for the inner-optimization, the iteration number is 20 and the iteration in
running conjugate gradient is 10. In computing the sufficiency gap, we sample 33 points to compute
the sufficiency gap.

D.2 ADDITIONAL EMPIRICAL RESULTS
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Figure 9: Computational time between T -step explicit and implicit approach in CelebA. Specifically,
solver = 2 indicates the the conjugate gradient is executed 2 iterations. The results reveals the
benefits of implicit approach: avoiding the back-propagation through the inner-optimization path.
In contrast, the time complexity in explicit approach linearly increases with the inner-optimization
step, which is consistent with our analysis.

Computational complexity To show the efficiency of the implicit approach, we empirically com-
pare the computational complexity of the T -step explicit alignment and implicit approach (for dif-
ferent iterations of conjugate gradient solver.) The experimental results verified the efficiency of the
implicit approach, where a significant large inner-optimization step does not considerably increase
the computational time.

Gradient evolution We also visualize the gradient norm of the representation λ in the Toxic
dataset, shown in Fig. 10. The results verify the convergence behavior and the gradient norm fi-
nally tends to zero.

D.3 DISCUSSION WITH NON-DEEP LEARNING BASELINES

In order to show the effectiveness of the proposed approach, we additionally compare the FAHT
(Zhang & Ntoutsi, 2019), a decision tree based fair classification approach. We evaluated the empir-
ical performance on Toxic comments dataset.
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Figure 10: Gradient Norm evolution w.r.t. representation λ in Toxic comments dataset. We visualize
the norm of ˜grad

δ
(λ) at each training epoch, which suggests a convergence behavior and the gradient

finally tends to zero.

Table 5: Comparison with Fairness Aware Decision Tree

Method Accuracy (↑) ∆SufC (↓)
FAHT 0.596 0.397
Implicit 0.760 0.051

The implicit approach demonstrates the considerable better results, which may come from two as-
pects: (1) the Toxic task is a high-dimensional classification problem (x ∈ R748), where the deep
learning based approach is more effective in handling the high-dim dataset. (2) The FAHT aims to
realize the statistical parity (the independence rule), which is not compatible with the sufficiency.
According to the analysis of (Barocas et al., 2019), when the sensitive attribute (A) and label (Y)
are not independent (This has been justified by computing their Pearson Correlation coefficient), the
sufficiency and independence cannot both hold.

D.4 SUFFICIENCY GAP IN REGRESSION

We visualize the sufficiency gap of NLSY dataset.

E COMPLEMENTARY TECHNICAL DETAILS

We present complementary details that are related to the paper.

E.1 CONJUGATE GRADIENT METHOD

We present the Conjugate Gradient (CG) algorithm in Algo. 2 through autograd. In the conven-
tional CG algorithm with objective 1

2x
TAX−bX , we need to estimateAX and compute its residual

and update X . Since in our problem setting, the A = ∇2
h0
L0(hε0, λ), then computing AX can be

realized through Hessian-vector product through autograd, denoted as function F in the paper.
i.e.,∇2

h0
L0(hε0, λ)X = F (x).

Below we provided a simple PyTorch code for realizing the Hessian Vector product.

1 import torch
2 def hessain_vector_product(loss,model,vector):
3 # loss: the defined loss
4 # model: the model in computing the Hessian
5 # vector: the required vector in computing Hessian-vector product
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(a) ERM
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(b) Fair Mix-up
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(c) Implicit

Figure 11: Illustration of the sufficiency gap in NLSY dataset. The ERM and mix-up suffer the
high predictive sufficiency-gap, while the proposed implicit alignment can significantly mitigate the
sufficiency gap. In contrast, the probability calibration is not improved. This results also verifies the
inequivalence between the sufficiency gap and calibration gap (Liu et al., 2019).

Algorithm 2 Conjugate Gradient Method

Ensure: Function F that computes Hessian-vector product through autograd, initial value X0,
bias vector B.

1: Computing Residual: r0 = B − F (X0)
2: Set p0 = r0
3: for inner iterations k do
4: Computing αk ← rTk rk

pTk F (pk)

5: Xk+1 ← Xk + αkpk
6: rk+1 ← rk − αkF (pk)
7: If rk+1 is sufficiency small, then stop.

8: βk ←
rTk+1rk+1

rTk rk

9: pk+1 ← rk+1 + βkpk
10: end for
11: return Xk+1

6 partial_grad = torch.autograd.grad(loss, model_parameters(),
create_graph=True)

7 flat_grad = torch.cat([g.contiguous().view(-1) for g in partial_grad
])

8 h = torch.sum(flat_grad * vector_to_optimize)
9 hvp = torch.autograd.grad(h, model.parameters())

10 return hvp

Listing 1: Simple demo in computing Hessian vector product

E.2 CALIBRATION GAP IN THE REGRESSION

Based on Kuleshov et al. (2018), we first compute the predicted cumulative distribution (Ŷ0) of at
point t: D0(Ŷ0 ≤ t) = α, then we compute the corresponding ground truth cumulative distribution
(Y0) at point t. By changing t, we obtain several points on function D0(Y ≤ t|Ŷ0 ≤ t) = β. Then
the regression is probabilistic calibrated when α ≡ β. From this perspective, the zero calibration
gap can guarantee a zero sufficiency gap. But the inverse is not necessarily true, as our experimental
results suggest, a small sufficiency gap can lead to either small or large calibration gap. Thus it can
be quite promising to explore their inherent relations and trade-off in the fair regression.
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